Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ad de Roo is active.

Publication


Featured researches published by Ad de Roo.


Water Resources Research | 2011

Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; L.P.H. van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Monitoring Earths terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earths terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.


International Journal of River Basin Management | 2003

Development of a European flood forecasting system

Ad de Roo; Ben T. Gouweleeuw; Jutta Thielen; Jens Bartholmes; Paolina Bongioannini‐Cerlini; Ezio Todini; Paul D. Bates; Matt Horritt; Neil Hunter; Keith Beven; Florian Pappenberger; Erdmann Heise; Gdaly Rivin; Michael Hils; A. Hollingsworth; Bo Holst; Jaap Kwadijk; Paolo Reggiani; Marc Van Dijk; Kai Sattler; Eric Sprokkereef

Abstract Recent advances in meteorological forecast skill now enable significantly improved estimates of precipitation quantity, timing and spatial distribution to be made up to 10 days ahead for model scales of 40 km in forecast mode. Here we outline a prototype methodology to downscale these precipitation estimates using regional Numerical Weather Prediction models to spatial scales appropriate to hydrological forecasting and then use these to drive high‐resolution scale (1 or 5 km grid scale) water balance and rainfall‐runoff models. The aim is to develop a European Flood Forecasting System (EFFS) and determine what flood forecast skill can be achieved for given basins, meteorological events and prediction products. The output from the system is a probabilistic assessment of n‐day ahead discharge exceedence risk (where n < 10) for the whole of Europe at 5 km resolution which may then be updated as the forecast lead time reduces. At each stage the discharge estimates can be used to drive detailed (25–100 m resolution) hydraulic models to estimate the flood inundation which may potentially occur. Initial results are presented from a prototype version of the system used to perform a hindcast of the January 1995 flooding events in NW‐Europe (Rhine, Meuse).


Journal of Hydrometeorology | 2012

Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins

Vera Thiemig; Rodrigo Rojas; Mauricio Zambrano-Bigiarini; Vincenzo Levizzani; Ad de Roo

AbstractSix satellite-based rainfall estimates (SRFE)—namely, Climate Prediction Center (CPC) morphing technique (CMORPH), the Rainfall Estimation Algorithm, version 2 (RFE2.0), Tropical Rainfall Measuring Mission (TRMM) 3B42, Goddard profiling algorithm, version 6 (GPROF 6.0), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMap MVK), and one reanalysis product [the interim ECMWF Re-Analysis (ERA-Interim)]—were validated against 205 rain gauge stations over four African river basins (Zambezi, Volta, Juba–Shabelle, and Baro–Akobo). Validation focused on rainfall characteristics relevant to hydrological applications, such as annual catchment totals, spatial distribution patterns, seasonality, number of rainy days per year, and timing and volume of heavy rainfall events. Validation was done at three spatially aggregated levels: point-to-pixel, subcatchment, and river basin for ...


Geomorphology | 1994

Flooding of property by runoff from agricultural land in northwestern Europe

John Boardman; Laurence Ligneau; Ad de Roo; Karel Vandaele

Abstract In the last twenty years there has been an increase in the incidence of flooding of property by runoff from agricultural land in many areas of northwestern Europe. These events take the form of inundations by soil-laden water associated with erision and the formation of ephemeral or talweg gullies developed in normally dry valley bottoms. Costs of such events may be considerable e.g. almost US


Archive | 2001

Spatial Analysis of Erosion Conservation Measures with LISEM

Victor Jetten; Ad de Roo

2M at Rottingdean, southern England, in 1987. These costs are largely borne by individual house occupants, insurance companies and local councils. The distribution of flooding is widespread but areas of high risk can be identified: the hilly area of central Belgium, parts of northern France, the South Downs in southern England and South-Limburg (the Netherlands). All these areas have silty, more or less loessial soils. Two types of flooding may be distinguished: winter flooding associated with wet soils and the cultivation of winter cereals, and summer flooding due to thunderstorm activity and runoff particularly from sugar beet, maize and potato crops. The distribution of these types of erosion varies in relation to the interaction between physical characteristics (soils and topography), climatic conditions and land use across the region. The reason for the recent increase in flooding events appears to be changes in land use, in the area of arable cropping, and the continued intensification of farming such as the use of chemical fertilizers, the decline in aggregate stability, the increase in the size of fields and compaction by farm vehicles. In some regions the risk of flooding has also increased because of expansion of urban areas in valley bottom locations. Communities have responded to the flooding hazard with emergency or protective measures usually involving engineered structures rather than land use change. The policy response to the increased risk of flooding has been very limited especially at the national and provincial level, the exception being plans developed with farming organisations in South-Limburg and the Pays de Caux. In southern England initiatives have been few and largely consist of protective measures undertaken by urban municipalities.


Water Resources Research | 2016

Global‐scale regionalization of hydrologic model parameters

Hylke E. Beck; Albert I. J. M. van Dijk; Ad de Roo; Diego Gonzalez Miralles; Tim R. McVicar; Jaap Schellekens; L. Adrian Bruijnzeel

Runoff and erosion models are generally used to assess environmental problems such as soil erosion problems with loss of fertile soil and damage to crops, off-site damage to property and infrastructure by “mud-flows,” and pollution of surface water by sediment with agricultural chemicals and nutrients. These problems occur frequently in the loess zone in Western Europe (Boardman et al., 1994) of which Limburg, the southern province of the Netherlands, forms a small part. The Limburg Soil Erosion Model LISEM, (De Roo et al. 1996a, 1996b; LISEM, 2000) is a physically-based hydrological and soil erosion model, operating at the catchment scale, that was designed to assess these problems. The model simulates runoff and erosion with single rainstorms in agricultural catchments of a size ranging from 1 hectare up to approximately 10 km2. The upper limit size is determined by the fact that in LISEM a stream channel cannot be larger than one pixel; larger catchments with floodplains and river systems cannot be simulated.


Earth’s Future | 2017

Global projections of river flood risk in a warmer world

Lorenzo Alfieri; Berny Bisselink; Francesco Dottori; Gustavo Naumann; Ad de Roo; Peter Salamon; Klaus Wyser; Luc Feyen

Current state-of-the-art models typically applied at continental to global scales (hereafter called macroscale) tend to use a priori parameters, resulting in suboptimal streamflow (Q) simulation. For the first time, a scheme for regionalization of model parameters at the global scale was developed. We used data from a diverse set of 1787 small-to-medium sized catchments ( 10–10,000 km2) and the simple conceptual HBV model to set up and test the scheme. Each catchment was calibrated against observed daily Q, after which 674 catchments with high calibration and validation scores, and thus presumably good-quality observed Q and forcing data, were selected to serve as donor catchments. The calibrated parameter sets for the donors were subsequently transferred to 0.5° grid cells with similar climatic and physiographic characteristics, resulting in parameter maps for HBV with global coverage. For each grid cell, we used the 10 most similar donor catchments, rather than the single most similar donor, and averaged the resulting simulated Q, which enhanced model performance. The 1113 catchments not used as donors were used to independently evaluate the scheme. The regionalized parameters outperformed spatially uniform (i.e., averaged calibrated) parameters for 79% of the evaluation catchments. Substantial improvements were evident for all major Koppen-Geiger climate types and even for evaluation catchments > 5000 km distant from the donors. The median improvement was about half of the performance increase achieved through calibration. HBV with regionalized parameters outperformed nine state-of-the-art macroscale models, suggesting these might also benefit from the new regionalization scheme. The produced HBV parameter maps including ancillary data are available via www.gloh2o.org.


Journal of Hydrometeorology | 2015

Global Maps of Streamflow Characteristics Based on Observations from Several Thousand Catchments

Hylke E. Beck; Ad de Roo; Albert I. J. M. van Dijk

Rising global temperature has put increasing pressure on understanding the linkage between atmospheric warming and the occurrence of natural hazards. While the Paris Agreement has set the ambitious target to limiting global warming to 1.5°C compared to preindustrial levels, scientists are urged to explore scenarios for different warming thresholds and quantify ranges of socioeconomic impact. In this work, we present a framework to estimate the economic damage and population affected by river floods at global scale. It is based on a modeling cascade involving hydrological, hydraulic and socioeconomic impact simulations, and makes use of state-of-the-art global layers of hazard, exposure and vulnerability at 1-km grid resolution. An ensemble of seven high-resolution global climate projections based on Representative Concentration Pathways 8.5 is used to derive streamflow simulations in the present and in the future climate. Those were analyzed to assess the frequency and magnitude of river floods and their impacts under scenarios corresponding to 1.5°C, 2°C, and 4°C global warming. Results indicate a clear positive correlation between atmospheric warming and future flood risk at global scale. At 4°C global warming, countries representing more than 70% of the global population and global gross domestic product will face increases in flood risk in excess of 500%. Changes in flood risk are unevenly distributed, with the largest increases in Asia, U.S., and Europe. In contrast, changes are statistically not significant in most countries in Africa and Oceania for all considered warming levels.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2006

Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model

Xingguo Mo; Florian Pappenberger; Keith Beven; Suxia Liu; Ad de Roo; Zhonghui Lin

AbstractStreamflow Q estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from 3000 to 4000 small-to-medium-sized catchments (10–10 000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total, 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps because of their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (at 0.125° resolution). These maps possess several unique feat...


Water Resources Research | 2012

Reply to comment by Keith J. Beven and Hannah L. Cloke on ''Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water''

Eric F. Wood; Joshua K. Roundy; Tara J. Troy; Rens van Beek; Marc F. P. Bierkens; Eleanor Blyth; Ad de Roo; Petra Döll; Michael B. Ek; James S. Famiglietti; David J. Gochis; Nick van de Giesen; Paul R. Houser; Stefan Kollet; Bernhard Lehner; Dennis P. Lettenmaier; Christa D. Peters-Lidard; Murugesu Sivapalan; Justin Sheffield; Andrew J. Wade; Paul Whitehead

Abstract Distributed hydrological models are considered to be a promising tool for predicting the impacts of global change on the hydrological processes at the basin scale. However, distributed models typically require values of many parameters to be specified or calibrated, which exacerbates model prediction uncertainty. This study uses the generalized likelihood uncertainty estimation (GLUE) technique to analyse the parameter sensitivities of a distributed hydrological model, LISFLOOD-WB. Discharge time series and event volume data of the Luo River at upstream and downstream sites, Lingkou and Lushi, are used to analyse parameter uncertainty. Eight key parameters in the model are selected for conditioning and sampled using the Monte Carlo method under assumed prior distributions. The results show that maximum efficiency of model performance is lower and the number of behavioural parameter sets giving acceptable performance is fewer in the Lingkou sub-basin than in the Lushi sub-basin with the same criteria of acceptability. For both sub-basins the distribution shape parameter B in the fast runoff generation scheme is the most sensitive in predicting both discharge time series and event volume at the outlet. It is also shown that the value of parameter B at which the highest efficiency is derived is shifted from a high value for Lushi to a low value for Lingkou, consistent with past experience of model calibration that the larger the basin, the larger the B value is. The channel Manning coefficient N c shows some sensitivity in the prediction of discharge time series, but less in the prediction of event volumes. The other key parameters show little sensitivity and good simulations are found across the full range of parameter values sampled. The uncertainty bounds of predicted discharges at the Lushi sub-basin are broad in the peak and narrow in the recession. The normalized difference between the upper and lower uncertainty bounds for both discharge and evapotranspiration are broad in summer and narrow in winter and that of recharge is the opposite.

Collaboration


Dive into the Ad de Roo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Pappenberger

European Centre for Medium-Range Weather Forecasts

View shared research outputs
Top Co-Authors

Avatar

James S. Famiglietti

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Burek

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Gochis

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge