Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ad Gillis is active.

Publication


Featured researches published by Ad Gillis.


The Journal of Pathology | 2007

High‐throughput microRNAome analysis in human germ cell tumours

Ad Gillis; Hans Stoop; R. Hersmus; Jw Oosterhuis; Y. Sun; C. Chen; S. Guenther; J. Sherlock; I. Veltman; J. Baeten; P.J. van der Spek; P. De Alarcon; Leendert Looijenga

Testicular germ cell tumours (GCTs) of adolescents and adults can be subdivided into seminomas (referred to as dysgerminomas of the ovary) and non‐seminomas, all referred to as type II GCTs. They originate from carcinoma in situ (CIS), being the malignant counterparts of primordial germ cells (PGCs)/gonocytes. The invasive components mimic embryogenesis, including the stem cell component embryonal carcinoma (EC), the somatic lineage teratoma (TE), and the extra‐embryonic tissues yolk sac tumour (YST) and choriocarcinoma (CH). The other type is the so‐called spermatocytic seminomas (SS, type III GCT), composed of neoplastic primary spermatocytes. We reported previously that the miRNAs hsa‐miR 371–373 cluster is involved in overruling cellular senescence induced by oncogenic stress, allowing cells to become malignant. Here we report the first high‐throughput screen of 156 microRNAs in a series of type II and III GCTs (n = 69, in duplicate) using a quantitative PCR‐based approach. After normalization to allow inter‐sample analysis, the technical replicates clustered together, and the previous hsa‐miRNA 371–373 cluster finding was confirmed. Unsupervised cluster analysis demonstrated that the cell lines are different from the in vivo samples. The in vivo samples, both normal and malignant, clustered predominantly based on their maturation status. This parallels normal embryogenesis, rather than chromosomal anomalies in the tumours. miRNAs within a single cluster showed a similar expression pattern, implying common regulatory mechanisms. Normal testicular tissue expressed most discriminating miRNAs at a higher level than SE and SS. Moreover, differentiated non‐seminomas showed overexpression of discriminating miRNAs. These results support the model that miRNAs are involved in regulating differentiation of stem cells, retained in GCTs. Copyright


The Journal of Pathology | 2008

Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications

J. de Jong; Hans Stoop; Ad Gillis; Rjhlm van Gurp; G‐jm van de Geijn; M.F. De Boer; R. Hersmus; Philippa T. K. Saunders; Richard A. Anderson; J. W. Oosterhuis; L. H. J. Looijenga

Combined action of SOX and POU families of transcription factors plays major roles in embryonic development. In embryonic stem cells, the combination of SOX2 and POU5F1 (OCT3/4) is essential for maintaining the undifferentiated state by activating pluripotency‐linked genes, and inhibition of genes involved in differentiation. Besides embryonic stem cells, POU5F1 is also present in early germ cells, primordial germ cells, and gonocytes, where it has a role in suppression of apoptosis. Here we demonstrate that SOX2 is absent in germ cells of human fetal gonads, and as expected carcinoma in situ (CIS), ie the precursor lesion of testicular germ cell tumours of adolescents and adults (TGCTs), and seminoma. Based on genome‐wide expression profiling, SOX17 was found to be present, instead of SOX2, in early germ cells and their malignant counterparts, CIS and seminoma. Immunohistochemistry, western blot analysis, and quantitative RT‐PCR showed that SOX17 is a suitable marker to distinguish seminoma from embryonal carcinoma, confirmed in representative cell lines. Aberrant SOX2 expression can be present in Sertoli cells when associated with CIS, which can be misdiagnosed as embryonal carcinoma. In conclusion, this study demonstrates the absence of SOX2 in human embryonic and malignant germ cells, which express SOX17 in conjunction with POU5F1. This finding has both diagnostic and developmental biological implications. It allows the identification of seminoma‐like cells from embryonal carcinoma based on a positive marker and might be the explanation for the different function of POU5F1 in normal and malignant germ cells versus embryonic stem cells. Copyright


Cancer Research | 2005

Amplification and Overexpression of the KIT Gene Is Associated with Progression in the Seminoma Subtype of Testicular Germ Cell Tumors of Adolescents and Adults

Alan McIntyre; Brenda Summersgill; Beata Grygalewicz; Ad Gillis; J. Stoop; Ruud J. H. L. M. van Gurp; Nening Dennis; Cyril Fisher; Robert Huddart; Colin S. Cooper; Jeremy Clark; J. Wolter Oosterhuis; Leendert Looijenga; Janet Shipley

We have previously identified amplification at 4q12 in testicular germ cell tumors of adolescents and adults centered around the KIT gene encoding a tyrosine kinase transmembrane receptor. Analysis of primary testicular germ cell tumors totaling 190 cases revealed 21% of the seminoma subtype with an increased copy number of KIT whereas this change was rarely found in the nonseminomas. In most cases, gain of KIT did not include the immediately flanking noncoding DNA or the flanking genes KDR and PDGFRA. Increased copy number of KIT was not found in the putative precursor lesion, carcinoma in situ (CIS), adjacent to tumor with this change. KIT overexpression was found independent of gain and KIT immunostaining was stronger in selected cases with gain of KIT compared to those without. Taken together with activating mutations of KIT in exon 17 identified in 13% of seminomas, this suggests that the KIT gene product plays a role in the progression of CIS towards seminoma, the further understanding of which may lead to novel less toxic therapeutic approaches.


Journal of Clinical Oncology | 2009

Microsatellite Instability, Mismatch Repair Deficiency, and BRAF Mutation in Treatment-Resistant Germ Cell Tumors

Friedemann Honecker; Hendrik Wermann; Frank Mayer; Ad Gillis; Hans Stoop; Ruud Jhlm van Gurp; Karin Oechsle; Ewout W. Steyerberg; Jörg Th. Hartmann; Winand N. M. Dinjens; J. Wolter Oosterhuis; Carsten Bokemeyer; Leendert Looijenga

PURPOSE Mismatch repair (MMR) deficiency and microsatellite instability (MSI) are associated with cisplatin resistance in human germ cell tumors (GCTs). BRAF mutation (V600E) is found in MSI colorectal cancers. The role of RAS/RAF pathway mutations in GCT treatment response is unknown. PATIENTS AND METHODS Two patient cohorts were investigated: 100 control GCTs (50 seminomas and 50 nonseminomas) and 35 cisplatin-based chemotherapy-resistant GCTs. MMR proteins were analyzed by immunohistochemistry, and eight microsatellite loci were examined for MSI. Tumors were assessed for specific BRAF and KRAS mutations. RESULTS Resistant tumors showed a higher incidence of MSI than controls: 26% versus 0% in two or more loci (P < .0001). All resistant tumors were wild-type KRAS, and two controls (2%) contained a KRAS mutation. There was a significantly higher incidence of BRAF V600E mutation in resistant tumors compared with controls: 26% versus 1% (P < .0001). BRAF mutations were highly correlated with MSI (P = .006), and MSI and mutated BRAF were correlated with weak or absent staining for hMLH1 (P = .017 and P = .008). Low or absent staining of hMLH1 was correlated with promoter hypermethylation (P < .001). Tumors lacking expression of hMLH1 or MSH6 were significantly more frequent in resistant GCTs than in controls (P = .001 and 0.0036, respectively). Within the subgroup of resistant tumors, patients with MSI showed a trend to longer progression-free survival (P = .068). CONCLUSION We report for the first time a correlation between a gene mutation--BRAF V600E--and cisplatin resistance in nonseminomatous GCTs. Furthermore, a correlation between MMR deficiency, MSI, and treatment failure is confirmed.


Apmis | 2003

Role of gain of 12p in germ cell tumour development.

Leendert Looijenga; Gaetano Zafarana; Beata Grygalewicz; Brenda Summersgill; Maria Debiec-Rychter; Joris A. Veltman; Eric F.P.M. Schoenmakers; Sandrine Rodriguez; Osman Jafer; Jeremy Clark; Ad Geurts van Kessel; Janet Shipley; Ruud J. H. L. M. van Gurp; Ad Gillis; J. Wolter Oosterhuis

Within the human testis, three entities of germ cell tumours are distinguished: the teratomas and yolk sac tumors of newborn and infants, the seminomas and nonseminomas of adolescents and young adults, referred to as testicular germ cell tumours (TGCT), and the spermatocytic seminomas. Characteristic chromosomal anomalies have been reported for each group, supporting their distinct pathogenesis. TGCT are the most common cancer in young adult men. The initiating pathogenetic event of these tumours occurs during embryonal development, affecting a primordial germ cell or gonocyte. Despite this intra‐uterine initiation, the tumour will only be clinically manifest after puberty, with carcinoma in situ (IS) as the precursor. All invasive TGCT, both seminomas and nonseminomas, as well as CIS cells are aneuploid. The only consistent (structural) chromosomal abnormalities in invasive TGCT are gains of the short arm of chromosome 12, mostly due to isochromosome (i(12p)) formation. This suggests that an increase in copy number of a gene(s) on 12p is associated with the development of a clinically manifest TGCT. Despite the numerous (positional) candidate gene approaches that have been undertaken thus far, identification of a causative gene(s) has been hampered by the fact that most 12p gains involve rather large genomic intervals, containing unmanageable numbers of candidate genes. Several years ago, we initiated a search for 12p candidate genes using TGCT with a restricted 12p‐amplification, cytogenetically identified as 12p11.2–p12.1. This approach is mainly based on identification of candidate genes mapped within the shortest region of overlap of amplification (SROA). In this review, data will be presented, which support the model that gain of 12p‐sequences is associated with suppression of apoptosis and Sertoli cell‐independence of CIS cells. So far, DAD‐R is one of the most likely candidate genes involved in this process, possibly via N‐glycosylation. Preliminary results on high through‐put DNA‐ and cDNA array analyses of 12p‐sequences will be presented.


Biology of Reproduction | 2010

Critical Function of AP-2gamma/TCFAP2C in Mouse Embryonic Germ Cell Maintenance

Susanne Weber; Dawid Eckert; Daniel Nettersheim; Ad Gillis; Sabine Schäfer; Peter Kuckenberg; Julia Ehlermann; Uwe Werling; Katharina Biermann; Leendert Looijenga; Hubert Schorle

Abstract Formation of the germ cell lineage involves multiple processes, including repression of somatic differentiation and reacquisition of pluripotency as well as a unique epigenetic constitution. The transcriptional regulator Prdm1 has been identified as a main coordinator of this process, controlling epigenetic modification and gene expression. Here we report on the expression pattern of the transcription factor Tcfap2c, a putative downstream target of Prdm1, during normal mouse embryogenesis and the consequences of its specific loss in primordial germ cells (PGCs) and their derivatives. Tcfap2c is expressed in PGCs from Embryonic Day 7.25 (E 7.25) up to E 12.5, and targeted disruption resulted in sterile animals, both male and female. In the mutant animals, PGCs were specified but were lost around E 8.0. PGCs generated in vitro from embryonic stem cells lacking TCFAP2C displayed induction of Prdm1 and Dppa3. Upregulation of Hoxa1, Hoxb1, and T together with lack of expression of germ cell markers such Nanos3, Dazl, and Mutyh suggested that the somatic gene program is induced in TCFAP2C-deficient PGCs. Repression of TCFAP2C in TCam-2, a human PGC-resembling seminoma cell line, resulted in specific upregulation of HOXA1, HOXB1, MYOD1, and HAND1, indicative of mesodermal differentiation. Expression of genes indicative of ectodermal, endodermal, or extraembryonic differentiation, as well as the finding of no change to epigenetic modifications, suggested control by other factors. Our results implicate Tcfap2c as an important effector of Prdm1 activity that is required for PGC maintenance, most likely mediating Prdm1-induced suppression of mesodermal differentiation.


International Journal of Andrology | 2011

Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis

Ad Gillis; Hans Stoop; Katharina Biermann; R.J.H.L.M. van Gurp; E. Swartzman; S. Cribbes; A. Ferlinz; M. Shannon; J. W. Oosterhuis; L. H. J. Looijenga

OCT3/4, NANOG, SOX2 and, most recently, LIN28 have been identified as key regulators of pluripotency in mammalian embryonic and induced stem cells, and are proven to be crucial for generation of the mouse germ-cell lineage. These factors are a hallmark of certain histological types of germ-cell tumours (GCTs). Here, we report novel information on the temporal and spatial expression pattern of LIN28 during normal human male germ-cell development as well as various types of GCTs. To investigate LIN28 expression, immunohistochemical analyses and quantitative proximity ligation assay-based TaqMan protein assays were applied on snap-frozen and formalin-fixed, paraffin-embedded samples as well as representative cell lines. LIN28 was found in primordial germ cells, gonocytes and pre-spermatogonia, in contrast to OCT3/4 and NANOG, which were found only in the first two stages. LIN28 was also found in all precursor lesions (carcinoma in situ and gonadoblastoma) of type II GCTs, as well as the invasive components seminoma and the non-seminomatous elements embryonal carcinoma and yolk sac tumour. Choriocarcinoma showed a heterogeneous pattern, while teratomas and spermatocytic seminomas (type III GCTs) were negative. This expression pattern suggests that LIN28 is associated with malignant behaviour of type II GCTs. Cell line experiments involving siRNA knockdown of LIN28, OCT3/4 and SOX2 showed that LIN28 plays a role in the maintenance of the undifferentiated state of both seminoma and embryonal carcinoma, closely linked to, and likely upstream of OCT3/4 and NANOG. In conclusion, LIN28 regulates the differentiation status of seminoma and embryonal carcinoma and is likely to play a related role in normal human germ-cell development.


Genes, Chromosomes and Cancer | 2006

Sequence analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents and adults

Graham R. Bignell; Raffaella Smith; Chris Hunter; Philip Stephens; Helen Davies; Christopher Greenman; Jon Teague; Adam Butler; Sarah Edkins; Claire Stevens; Sarah O'Meara; Adrian Parker; Tim Avis; Syd Barthorpe; Lisa Brackenbury; Gemma Buck; Jody Clements; Jennifer Cole; Ed Dicks; Ken Edwards; Simon A. Forbes; Matthew Gorton; Kristian Gray; Kelly Halliday; Rachel Harrison; Katy Hills; Jonathon Hinton; David Jones; Vivienne Kosmidou; Ross Laman

The protein kinase gene family is the most frequently mutated in human cancer. Previous work has documented activating mutations in the KIT receptor tyrosine kinase in testicular germ‐cell tumors (TGCT). To investigate further the potential role of mutated protein kinases in the development of TGCT and to characterize the prevalence and patterns of point mutations in these tumors, we have sequenced the coding exons and splice junctions of the annotated protein kinase family of 518 genes in a series of seven seminomas and six nonseminomas. Our results show a remarkably low mutation frequency, with only a single somatic point mutation, a K277E mutation in the STK10 gene, being identified in a total of more than 15 megabases of sequence analyzed. Sequencing of STK10 in an additional 40 TGCTs revealed no further mutations. Comparative genomic hybridization and LOH analysis using SNP arrays demonstrated that the 13 TGCTs mutationally screened through the 518 protein kinase genes were uniformly aneuploid with consistent chromosomal gains on 12p, 8q, 7, and X and losses on 13q, 18q, 11q, and 4q. Our results do not provide evidence for a mutated protein kinase implicated in the development of TGCT other than KIT. Moreover, they demonstrate that the general prevalence of point mutations in TGCT is low, in contrast to the high frequency of copy number changes.


BMC Developmental Biology | 2008

Expression of BLIMP1/PRMT5 and concurrent histone H2A/H4 arginine 3 dimethylation in fetal germ cells, CIS/IGCNU and germ cell tumors

Dawid Eckert; Katharina Biermann; Daniel Nettersheim; Ad Gillis; Klaus Steger; Hans-Martin Jäck; Annette M. Müller; Leendert Looijenga; Hubert Schorle

BackgroundMost testicular germ cell tumors arise from intratubular germ cell neoplasia unclassified (IGCNU, also referred to as carcinoma in situ), which is thought to originate from a transformed primordial germ cell (PGC)/gonocyte, the fetal germ cell. Analyses of the molecular profile of IGCNU and seminoma show similarities to the expression profile of fetal germ cells/gonocytes. In murine PGCs, expression and interaction of Blimp1 and Prmt5 results in arginine 3 dimethylation of histone H2A and H4. This imposes epigenetic modifications leading to transcriptional repression in mouse PGCs enabling them to escape the somatic differentiation program during migration, while expressing markers of pluripotency.ResultsIn the present study, we show that BLIMP1 and PRMT5 were expressed and arginine dimethylation of histones H2A and H4 was detected in human male gonocytes at weeks 12–19 of gestation, indicating a role of this mechanism in human fetal germ cell development as well. Moreover, BLIMP1/PRMT5 and histone H2A and H4 arginine 3 dimethylation was present in IGCNU and most seminomas, while downregulated in embryonal carcinoma (EC) and other nonseminomatous tumors.ConclusionThese data reveal similarities in marker expression and histone modification between murine and human PGCs. Moreover, we speculate that the histone H2A and H4 arginine 3 dimethylation might be the mechanism by which IGCNU and seminoma maintain the undifferentiated state while loss of these histone modifications leads to somatic differentiation observed in nonseminomatous tumors.


American Journal of Pathology | 2000

Restricted 12p Amplification and RAS Mutation in Human Germ Cell Tumors of the Adult Testis

Helene Roelofs; M.C. Mostert; Kirsten Pompe; Gaetano Zafarana; Monique van Oorschot; Ruud J. H. L. M. van Gurp; Ad Gillis; Hans Stoop; Berna Beverloo; J. Wolter Oosterhuis; Carsten Bokemeyer; Leendert Looijenga

Human testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been identified with an additional high-level amplification of a restricted region of 12p including the K-RAS proto-oncogene. Here we show that the incidence of these restricted 12p amplifications is approximately 8% in primary TGCTs. Within a single cell formation of i(12p) and restricted 12p amplification is mutually exclusive. The borders of the amplicons cluster in short regions, and the amplicon was never found in the adjacent carcinoma in situ cells. Seminomas with the restricted 12p amplification virtually lacked apoptosis and the tumor cells showed prolonged in vitro survival like seminoma cells with a mutated RAS gene. However, no differences in proliferation index between these different groups of seminomas were found. Although patients with a seminoma containing a homogeneous restricted 12p amplification presented at a significantly younger age than those lacking it, the presence of a restricted 12p amplification/RAS mutation did not predict the stage of the disease at clinical presentation and the treatment response of primary seminomas. In 55 primary and metastatic tumors from 44 different patients who failed cisplatinum-based chemotherapy, the restricted 12p amplification and RAS mutations had the same incidence as in the consecutive series of responding patients. These data support the model that gain of 12p in TGCTs is related to invasive growth. It allows tumor cells, in particular those showing characteristics of early germ cells (ie, the seminoma cells), to survive outside their specific microenvironment. Overexpression of certain genes on 12p probably inhibits apoptosis in these tumor cells. However, the copy numbers of the restricted amplification of 12p and K-RAS mutations do not predict response to therapy and survival of the patients.

Collaboration


Dive into the Ad Gillis's collaboration.

Top Co-Authors

Avatar

Leendert Looijenga

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

J. Wolter Oosterhuis

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Hans Stoop

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Katharina Biermann

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolter Oosterhuis

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge