Ada Linkies
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ada Linkies.
Plant Physiology | 2009
Kerstin Müller; Ada Linkies; Stephen C. Fry; Anja Krieger-Liszkay; Gerhard Leubner-Metzger
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species.
The Plant Cell | 2009
Ada Linkies; Kerstin Müller; Karl Morris; Veronika Turečková; Meike Wenk; Cassandra S.C. Cadman; Françoise Corbineau; Miroslav Strnad; James R. Lynn; William E. Finch-Savage; Gerhard Leubner-Metzger
The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae.
Plant Cell Reports | 2012
Ada Linkies; Gerhard Leubner-Metzger
Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance.
New Phytologist | 2009
Kerstin Müller; Anna Catharina Carstens; Ada Linkies; Miguel Angel Torres; Gerhard Leubner-Metzger
*Seeds can enter a state of dormancy, in which they do not germinate under optimal environmental conditions. Dormancy can be broken during seed after-ripening in the low-hydrated state. *By screening enhancer trap lines of Arabidopsis, we identified a role for the NADPH-oxidase AtrbohB in after-ripening. Semiquantitative PCR was used to investigate AtrbohB transcripts in seeds. These methods were complemented with a pharmacological approach using the inhibitor diphenylene iodonium chloride (DPI) and biomechanical measurements in the Brassicaceae seed model system cress (Lepidium sativum) as well as protein carbonylation assays. *atrbohB mutants fail to after-ripen and show reduced protein oxidation. AtrbohB pre-mRNA is alternatively spliced in seeds in a hormonally and developmentally regulated manner. AtrbohB is a major producer of superoxide in germinating Arabidopsis seeds, and inhibition of superoxide production by diphenylene iodonium (DPI) leads to a delay in Arabidopsis and cress seed germination and cress endosperm weakening. *Reactive oxygen species produced by AtrbohB during after-ripening could act via abscisic acid (ABA) signalling or post-translational protein modifications. Alternative splicing could be a general mechanism in after-ripening: by altered processing of stored pre-mRNAs seeds could react quickly to environmental changes.
Plant Molecular Biology | 2010
Kai Graeber; Ada Linkies; Kerstin Müller; Andrea Wunchova; Anita Rott; Gerhard Leubner-Metzger
Seed dormancy is genetically determined with substantial environmental influence mediated, at least in part, by the plant hormone abscisic acid (ABA). The ABA-related transcription factor ABI3/VP1 (ABA INSENSITIVE3/VIVIPAROUS1) is widespread among green plants. Alternative splicing of its transcripts appears to be involved in regulating seed dormancy, but the role of ABI3/VP1 goes beyond seeds and dormancy. In contrast, DOG1 (DELAY OF GERMINATION 1), a major quantitative trait gene more specifically involved in seed dormancy, was so far only known from Arabidopsis thaliana (AtDOG1) and whether it also has roles during the germination of non-dormant seeds was not known. Seed germination of Lepidium sativum (‘garden cress’) is controlled by ABA and its antagonists gibberellins and ethylene and involves the production of apoplastic hydroxyl radicals. We found orthologs of AtDOG1 in the Brassicaceae relatives L. sativum (LesaDOG1) and Brassica rapa (BrDOG1) and compared their gene structure and the sequences of their transcripts expressed in seeds. Tissue-specific analysis of LesaDOG1 transcript levels in L. sativum seeds showed that they are degraded upon imbibition in the radicle and the micropylar endosperm. ABA inhibits germination in that it delays radicle protrusion and endosperm weakening and it increased LesaDOG1 transcript levels during early germination due to enhanced transcription and/or inhibited degradation. A reduced decrease in LesaDOG1 transcript levels upon ABA treatment is evident in the late germination phase in both tissues. This temporal and ABA-related transcript expression pattern suggests a role for LesaDOG1 in the control of germination timing of non-dormant L. sativum seeds. The possible involvement of the ABA-related transcription factors ABI3 and ABI5 in the regulation of DOG1 transcript expression is discussed. Other species of the monophyletic genus Lepidium showed coat or embryo dormancy and are therefore highly suited for comparative seed biology.
Journal of Experimental Botany | 2011
Antje Voegele; Ada Linkies; Kerstin Müller; Gerhard Leubner-Metzger
Germination of endospermic seeds is partly regulated by the micropylar endosperm, which acts as constraint to radicle protrusion. Gibberellin (GA) signalling pathways control coat-dormancy release, endosperm weakening, and organ expansion during seed germination. Three GIBBERELLIN INSENSITIVE DWARF1 (GID1) GA receptors are known in Arabidopsis thaliana: GID1a, GID1b, and GID1c. Molecular phylogenetic analysis of angiosperm GID1s reveals that they cluster into two eudicot (GID1ac, GID1b) groups and one monocot group. Eudicots have at least one gene from each of the two groups, indicating that the different GID1 receptors fulfil distinct roles during plant development. A comparative Brassicaceae approach was used, in which gid1 mutant and whole-seed transcript analyses in Arabidopsis were combined with seed-tissue-specific analyses of its close relative Lepidium sativum (garden cress), for which three GID1 orthologues were cloned. GA signalling via the GID1ac receptors is required for Arabidopsis seed germination, GID1b cannot compensate for the impaired germination of the gid1agid1c mutant. Transcript expression patterns differed temporarily, spatially, and hormonally, with GID1b being distinct from GID1ac in both species. Endosperm weakening is mediated, at least in part, through GA-induced genes encoding cell-wall-modifying proteins. A suppression subtraction hybridization (SSH) cDNA library enriched for sequences that are highly expressed during early germination in the micropylar endosperm contained expansins and xyloglucan endo-transglycosylases/hydrolases (XTHs). Their transcript expression patterns in both species strongly suggest that they are regulated by distinct GID1-mediated GA signalling pathways. The GID1ac and GID1b pathways seem to fulfil distinct regulatory roles during Brassicaceae seed germination and seem to control their downstream targets distinctly.
The Plant Cell | 2011
Kai Graeber; Ada Linkies; Andrew T. A. Wood; Gerhard Leubner-Metzger
Developmental processes like seed germination are characterized by massive transcriptome changes. This study compares seed transcriptome data sets of different Brassicaceae to identify stable expressed reference genes for cross-species quantitative RT-PCR normalization. A workflow is presented for improving RNA quality, quantitative RT-PCR performance, and normalization when analyzing expression changes across species. Comparative biology includes the comparison of transcriptome and quantitative real-time RT-PCR (qRT-PCR) data sets in a range of species to detect evolutionarily conserved and divergent processes. Transcript abundance analysis of target genes by qRT-PCR requires a highly accurate and robust workflow. This includes reference genes with high expression stability (i.e., low intersample transcript abundance variation) for correct target gene normalization. Cross-species qRT-PCR for proper comparative transcript quantification requires reference genes suitable for different species. We addressed this issue using tissue-specific transcriptome data sets of germinating Lepidium sativum seeds to identify new candidate reference genes. We investigated their expression stability in germinating seeds of L. sativum and Arabidopsis thaliana by qRT-PCR, combined with in silico analysis of Arabidopsis and Brassica napus microarray data sets. This revealed that reference gene expression stability is higher for a given developmental process between distinct species than for distinct developmental processes within a given single species. The identified superior cross-species reference genes may be used for family-wide comparative qRT-PCR analysis of Brassicaceae seed germination. Furthermore, using germinating seeds, we exemplify optimization of the qRT-PCR workflow for challenging tissues regarding RNA quality, transcript stability, and tissue abundance. Our work therefore can serve as a guideline for moving beyond Arabidopsis by establishing high-quality cross-species qRT-PCR.
Plant Physiology | 2011
Karl Morris; Ada Linkies; Kerstin Müller; Krystyna Oracz; Xiaofeng Wang; James R. Lynn; Gerhard Leubner-Metzger; William E. Finch-Savage
The completion of germination in Lepidium sativum and other endospermic seeds (e.g. Arabidopsis [Arabidopsis thaliana]) is regulated by two opposing forces, the growth potential of the radicle (RAD) and the resistance to this growth from the micropylar endosperm cap (CAP) surrounding it. We show by puncture force measurement that the CAP progressively weakens during germination, and we have conducted a time-course transcript analysis of RAD and CAP tissues throughout this process. We have also used specific inhibitors to investigate the importance of transcription, translation, and posttranslation levels of regulation of endosperm weakening in isolated CAPs. Although the impact of inhibiting translation is greater, both transcription and translation are required for the completion of endosperm weakening in the whole seed population. The majority of genes expressed during this process occur in both tissues, but where they are uniquely expressed, or significantly differentially expressed between tissues, this relates to the functions of the RAD as growing tissue and the CAP as a regulator of germination through weakening. More detailed analysis showed that putative orthologs of cell wall-remodeling genes are expressed in a complex manner during CAP weakening, suggesting distinct roles in the RAD and CAP. Expression patterns are also consistent with the CAP being a receptor for environmental signals influencing germination. Inhibitors of the aspartic, serine, and cysteine proteases reduced the number of isolated CAPs in which weakening developed, and inhibition of the 26S proteasome resulted in its complete cessation. This indicates that targeted protein degradation is a major control point for endosperm weakening.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Kai Graeber; Ada Linkies; Tina Steinbrecher; Klaus Mummenhoff; Danuše Tarkowská; Veronika Turečková; Michael Ignatz; Katja Sperber; Antje Voegele; Hans de Jong; Terezie Urbanová; Miroslav Strnad; Gerhard Leubner-Metzger
Significance Mechanisms of plant seed dormancy evolved to delay germination to a season favorable for seedling growth. Germination timing is an important adaptive early-life history trait which determines plant fitness in natural and agricultural ecosystems. The DELAY OF GERMINATION 1 (DOG1) gene provides natural genetic variation in dormancy, was the first dormancy-specific gene cloned, and encodes a protein of unknown function. We show here that DOG1 controls dormancy of different species by setting the optimal ambient temperature window for germination. This timing is achieved by temperature-dependent alteration of the gibberellin hormone metabolism, which in turn leads to altered expression of genes required for the biomechanical weakening of the coat encasing the embryo. The conserved DOG1-mediated coat-dormancy mechanism controls the timing of seed germination in a temperature-dependent manner. Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Planta | 2012
Sonja Rentzsch; Dagmara Podzimska; Antje Voegele; Madeleine Imbeck; Kerstin Müller; Ada Linkies; Gerhard Leubner-Metzger
Gibberellins (GA) are involved in bud dormancy release in several species. We show here that GA-treatment released bud dormancy, initiated bud sprouting and promoted sprout growth of excised potato tuber bud discs (‘eyes’). Monoterpenes from peppermint oil (PMO) and S-(+)-carvone (CAR) interact with the GA-mediated bud dormancy release in a hormesis-type response: low monoterpene concentrations enhance dormancy release and the initiation of bud sprouting, whereas high concentrations inhibit it. PMO and CAR did, however, not affect sprout growth rate after its onset. We further show that GA-induced dormancy release is associated with tissue-specific regulation of α- and β-amylases. Molecular phylogenetic analysis shows that potato α-amylases cluster into two distinct groups: α-AMY1 and α-AMY2. GA-treatment induced transcript accumulation of members of both α-amylase groups, as well as α- and β-amylase enzyme activity in sprout and ‘sub-eye’ tissues. In sprouts, CAR interacts with the GA-mediated accumulation of α-amylase transcripts in an α-AMY2-specific and dose-dependent manner. Low CAR concentrations enhance the accumulation of α-AMY2-type α-amylase transcripts, but do not affect the α-AMY1-type transcripts. Low CAR concentrations also enhance the accumulation of α- and β-amylase enzyme activity in sprouts, but not in ‘sub-eye’ tissues. In contrast, high CAR concentrations have no appreciable effect in sprouts on the enzyme activities and the α-amylase transcript abundances of either group. The dose-dependent effects on the enzyme activities and the α-AMY2-type α-amylase transcripts in sprouts are specific for CAR but not for PMO. Different monoterpenes therefore may have specific targets for their interaction with hormone signalling pathways.