Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ada Viterbo is active.

Publication


Featured researches published by Ada Viterbo.


Nature Reviews Microbiology | 2004

Trichoderma species - opportunistic, avirulent plant symbionts.

Gary E. Harman; Charles R. Howell; Ada Viterbo; Ilan Chet; Matteo Lorito

Trichoderma spp. are free-living fungi that are common in soil and root ecosystems. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. At least some strains establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis and a few cells below this level. They produce or release a variety of compounds that induce localized or systemic resistance responses, and this explains their lack of pathogenicity to plants. These root–microorganism associations cause substantial changes to the plant proteome and metabolism. Plants are protected from numerous classes of plant pathogen by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, resistance to abiotic stresses and the uptake and use of nutrients.


Microbiology | 2012

Plant-beneficial effects of Trichoderma and of its genes.

Rosa Hermosa; Ada Viterbo; Ilan Chet; Enrique Monte

Trichoderma (teleomorph Hypocrea) is a fungal genus found in many ecosystems. Trichoderma spp. can reduce the severity of plant diseases by inhibiting plant pathogens in the soil through their highly potent antagonistic and mycoparasitic activity. Moreover, as revealed by research in recent decades, some Trichoderma strains can interact directly with roots, increasing plant growth potential, resistance to disease and tolerance to abiotic stresses. This mini-review summarizes the main findings concerning the Trichoderma-plant interaction, the molecular dialogue between the two organisms, and the dramatic changes induced by the beneficial fungus in the plant. Efforts to enhance plant resistance and tolerance to a broad range of stresses by expressing Trichoderma genes in the plant genome are also addressed.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens

Ada Viterbo; Ofir Ramot; Leonid Chernin; Ilan Chet

The use of specific mycolytic soil microorganisms to control plant pathogens is an ecological approach to overcome the problems caused by standard chemical methods of plant protection. The ability to produce lytic enzymes is a widely distributed property of rhizosphere-competent fungi and bacteria. Due to the higher activity of Trichoderma spp. lytic enzymes as compared to the same class of enzymes from other microorganisms and plants, effort is being aimed at improving biocontrol agents and plants by introducing Trichoderma genes via genetic manipulations. An overview is presented of the data currently available on lytic enzymes from the mycoparasitic fungus Trichoderma.


Plant Physiology | 2008

Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization.

Yariv Brotman; Eden Briff; Ada Viterbo; Ilan Chet

Swollenin, a protein first characterized in the saprophytic fungus Trichoderma reesei, contains an N-terminal carbohydrate-binding module family 1 domain (CBD) with cellulose-binding function and a C-terminal expansin-like domain. This protein was identified by liquid chromatography-mass spectrometry among many other cellulolytic proteins secreted in the coculture hydroponics medium of cucumber (Cucumis sativus) seedlings and Trichoderma asperellum, a well-known biocontrol agent and inducer of plant defense responses. The swollenin gene was isolated and its coding region was overexpressed in the same strain under the control of the constitutive pki1 promoter. Trichoderma transformants showed a remarkably increased ability to colonize cucumber roots within 6 h after inoculation. On the other hand, overexpressors of a truncated swollenin sequence bearing a 36-amino acid deletion of the CBD did not differ from the wild type, showing in vivo that this domain is necessary for full protein activity. Root colonization rates were reduced in transformants silenced in swollenin gene expression. A synthetic 36-mer swollenin CBD peptide was shown to be capable of stimulating local defense responses in cucumber roots and leaves and to afford local protection toward Botrytis cinerea and Pseudomonas syringae pv lachrymans infection. This indicates that the CBD domain might be recognized by the plant as a microbe-associated molecular pattern in the Trichoderma-plant interaction.


Molecular Plant Pathology | 2007

The 18mer peptaibols from Trichoderma virens elicit plant defence responses.

Ada Viterbo; Aric Wiest; Yariv Brotman; Ilan Chet; Charles M. Kenerley

SUMMARY Peptaibols, the products of non-ribosomal peptide synthetases (NRPS), are linear peptide antibiotics produced by Trichoderma and other fungal genera. Trichoderma virens strain Gv29-8, a well-known biocontrol agent and inducer of plant defence responses, produces three lengths of peptaibols, 11, 14 and 18 residues long, with several isoforms of each. Disruption of the NRPS gene, tex1, encoded by a 62.8-kb uninterrupted open reading frame, results in the loss of production of all forms of 18-residue peptaibols. Tex1 is expressed during all Trichoderma developmental stages (germinating conidia, sporulating and non-sporulating mycelia) examined on solid media. Expression analysis by reverse transcriptase PCR shows that in Gv29-8 wild-type the abundance of tex1 transcript is greater during co-cultivation with cucumber seedling roots than when grown alone. Cucumber plants co-cultivated with T. virens strains disrupted in tex1 show a significantly reduced systemic resistance response against the leaf pathogen Pseudomonas syringae pv. lachrymans, and reduced ability to produce phenolic compounds with inhibitory activity to the bacteria as compared with plants grown in the presence of wild-type. Two synthetic 18-amino-acid peptaibol isoforms (TvBI and TvBII) from Gv29-8 when applied to cucumber seedlings through the transpiration stream can alone induce systemic protection to the leaf pathogenic bacteria, induce antimicrobial compounds in cucumber cotyledons and up-regulate hydroxyperoxide lyase (hpl), phenylalanine ammonia lyase (pal1) and peroxidase (prx) gene expression. These data strongly suggest that the 18mer peptaibols are critical in the chemical communication between Trichoderma and plants as triggers of non-cultivar-specific defence responses.


PLOS Pathogens | 2013

Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

Yariv Brotman; Udi Landau; Álvaro Cuadros-Inostroza; Tohge Takayuki; Alisdair R. Fernie; Ilan Chet; Ada Viterbo; Lothar Willmitzer

Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.


Fems Microbiology Letters | 2010

Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203

Ada Viterbo; Udi Landau; Sofia Kim; Leonid Chernin; Ilan Chet

1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was evaluated in the biocontrol and plant growth-promoting fungus Trichoderma asperellum T203. Fungal cultures grown with ACC as the sole nitrogen source showed high enzymatic activity. The enzyme encoding gene (Tas-acdS) was isolated, and an average 3.5-fold induction of the gene by 3 mM ACC was detected by real-time PCR. Escherichia coli bacteria carrying the intron-free cDNA of Tas-acdS cloned into the vector pAlter-EX1 under the control of the tac promoter revealed specific ACC deaminase (ACCD) activity and the ability to promote canola (Brassica napus) root elongation in pouch assays. RNAi silencing of the ACCD gene in T. asperellum showed decreased ability of the mutants to promote root elongation of canola seedlings. These data suggest a role for ACCD in the plant root growth-promotion effect by T. asperellum.


Microbiology | 2012

Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana

Yariv Brotman; Jan Lisec; Michaël Méret; Ilan Chet; Lothar Willmitzer; Ada Viterbo

In the present study we have assessed, by transcriptional and metabolic profiling, the systemic defence response of Arabidopsis thaliana plants to the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) induced by the beneficial fungus Trichoderma asperelloides T203. Expression analysis (qPCR) of a set of 137 Arabidopsis genes related to Pst defence responses showed that T203 root colonization is not associated with major detectable transcriptomic changes in leaves. However, plants challenged with the bacterial pathogen showed quantitative differences in gene expression when pre-inoculated with T203, supporting priming of the plant by this beneficial fungus. Among the defence-related genes affected by T203, lipid transfer protein (LTP)4, which encodes a member of the lipid transfer pathogenesis-related family, is upregulated, whereas the WRKY40 transcription factor, known to contribute to Arabidopsis susceptibility to bacterial infection, shows reduced expression. On the other hand, root colonization by this beneficial fungus substantially alters the plant metabolic profile, including significant changes in amino acids, polyamines, sugars and citric acid cycle intermediates. This may in part reflect an increased energy supply required for the activation of plant defences and growth promotion effects mediated by Trichoderma species.


Molecular Plant Pathology | 2006

TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization

Ada Viterbo; Ilan Chet

SUMMARY A hydrophobin-like clone (TasHyd1) was isolated during a PCR differential mRNA display analysis conducted on Trichoderma asperellum mycelia interacting with plant roots. The open reading frame encodes a 145-amino-acid protein showing similarity to Pbhyd1, a Class I hydrophobin from the dimorphic fungus Paracoccidioides brasiliensis. TasHyd1 expression was detected in planta up to 5 days after Trichoderma root inoculation. TasHyd1 is constitutively expressed at low levels in mycelia in young cultures but gene expression is not detected in sporulating hyphae or in non-germinating spores. Carbon limitation stimulates expression of TasHyd1 whereas nitrogen or phosphate starvation down-regulate expression. TasHyd1 fused to an HA tag was over-expressed in Trichoderma and the protein was detected with an anti-HA antibody in the trifluoroacetic-acid-soluble fraction of mycelial cell walls. Over-expressor mutants were not affected in their mycoparasitic activity when tested in vitro against the plant pathogen Rhizoctonia solani and retained root colonization capacity comparable with that of the wild-type. TasHyd1 deletion mutants had no significant reduction in in vitro mycoparasitic activity but were altered in their wettability and were severely impaired in root attachment and colonization. These phenotypes were recovered by complementation of TasHyd1, indicating that the protein is a new hydrophobin that contributes to Trichoderma interaction with the plant.


European Journal of Plant Pathology | 2007

Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix

Edna Sharon; Ilan Chet; Ada Viterbo; Meira Bar-Eyal; Harel Nagan; Gary J. Samuels; Yitzhak Spiegel

Trichoderma (T.asperellum-203, 44 and GH11; T. atroviride-IMI 206040 and T. harzianum-248) parasitism on Meloidogyne javanica life stages was examined in vitro. Conidium attachment and parasitism differed beween the fungi. Egg masses, their derived eggs and second-stage juveniles (J2) were parasitized by Trichodermaasperellum-203, 44, and T. atroviride following conidium attachment. Trichodermaasperellum-GH11 attached to the nematodes but exhibited reduced penetration, whereas growth of T. harzianum-248 attached to egg masses was inhibited. Only a few conidia of the different fungi were attached to eggs and J2s without gelatinous matrix; the eggs were penetrated and parasitized by few hyphae, while J2s were rarely parasitized by the fungi. The gelatinous matrix specifically induced J2 immobilization by T.asperellum-203, 44 and T. atroviride metabolites that immobilized the J2s. A constitutive-GFP-expressing T. asperellum-203 construct was used to visualize fungal penetration of the nematodes. Scanning electron microscopy revealed the formation of coiling and appressorium-like structures upon attachment and parasitism by T. asperellum-203 and T. atroviride. Gelatinous matrix agglutinated T. asperellum-203 and T. atroviride conidia, a process that was Ca2+-dependent. Conidium agglutination was inhibited by carbohydrates, including fucose, as was conidium attachment to the nematodes. All but T. harzianum could grow on the gelatinous matrix, which enhanced conidium germination. A biomimetic system based on gelatinous-matrix-coated nylon fibers demonstrated the role of the matrix in parasitism: T. asperellum-203 and T. atroviride conidia attached specifically to the gelatinous-matrix-coated fibers and parasitic growth patterns, such as coiling, branching and appressoria-like structures, were induced in both fungi, similarly to those observed during nematode parasitism. All Trichoderma isolates exhibited nematode biocontrol activity in pot experiments with tomato plants. Parasitic interactions were demonstrated in planta: females and egg masses dissected from tomato roots grown in T. asperellum-203-treated soil were examined and found to be parasitized by the fungus. This study demonstrates biocontrol activities of Trichoderma isolates and their parasitic capabilities on M. javanica, elucidating the importance of the gelatinous matrix in the fungal parasitism.

Collaboration


Dive into the Ada Viterbo's collaboration.

Top Co-Authors

Avatar

Ilan Chet

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yariv Brotman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alfred M. Mayer

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Yagen

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ofir Ramot

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dana Friesem

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Michal Harel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Udi Landau

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge