Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adalberto Luiz Rosa is active.

Publication


Featured researches published by Adalberto Luiz Rosa.


Oral Microbiology and Immunology | 2009

Evidence of the presence of T helper type 17 cells in chronic lesions of human periodontal disease.

Cristina R. Cardoso; Gustavo Pompermaier Garlet; Grasiele Edilaine Crippa; Adalberto Luiz Rosa; W. M. Júnior; Marcos A. Rossi; João Santana da Silva

INTRODUCTION Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. METHODS Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappaB ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. RESULTS Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. CONCLUSION These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.


Brazilian Dental Journal | 2003

Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation

Adalberto Luiz Rosa

There is general agreement that rough surfaces improve both biologic and biomechanical responses to titanium (Ti) implants. The aim of this investigation was to study the effect of Ti surface roughness on the response of human bone marrow cell culture evaluating: cell attachment, cell proliferation, total protein content, alkaline phosphatase (ALP) activity, and bone-like nodule formation. Cells were cultured on commercially pure titanium (cpTi) discs with fourdifferent average roughnesses (Ra). For attachment evaluation, cells were cultured for 4 h. After 21 days, cell proliferation, total protein content, and ALP activity were evaluated. For bone-like nodule formation, cells were cultured for 28 days. Data were compared by ANOVA and Duncans multiple range test. Cell attachment was not affected by surface roughness. For cells cultured on Ti with Ra ranging from 0.80 microm to 1.90 microm, proliferation was reduced while total protein content, and ALP activity were increased. There was a non-statistically significant increase of bone-like nodule formation on a surface with Ra near 0.80 microm. These results suggest that for Ti an Ra ranging from 0.80 microm to 1.90 microm would optimize both intermediary and final cellular responses but not affect the initial response, and a smoother surface would not favor any evaluated response.


Dental Materials | 2003

Osteoblastic differentiation of cultured rat bone marrow cells on hydroxyapatite with different surface topography

Adalberto Luiz Rosa; Richard van Noort

UNLABELLED Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. OBJECTIVE The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on the response of the rat bone marrow cells, evaluating: cell attachment, proliferation, total protein content, alkaline phosphatase (ALP) activity, and bone-like nodule formation. METHODS Cells were cultured on HA discs manufactured by a combination of uniaxial powder pressing and different sintering conditions, with different percentage of microporosity (<5%-HA5, 15%-HA15, and 30%-HA30). For attachment evaluation, cells were cultured for 2 h. Proliferation was evaluated after 7 and 14 days. After 14 days, total protein content and ALP activity were measured. For bone-like nodule formation, cells were cultured for 21 days. Data were compared by ANOVA and Duncans multiple range test when appropriate. RESULTS Cell attachment was not affected by surface topography (p=0.37). Proliferation (p=0.001), total protein content (p=0.039), ALP activity (p=0.050), and bone-like nodule formation (p=0.00001) were all significantly decreased by the most irregular surface (HA30). SIGNIFICANCE. These results suggest that initial cell events were not affected by the surface topography of the HA. However, intermediary and final events such as proliferation, protein synthesis, ALP activity, and bone-like nodule formation favored surfaces with a more regular topography, such as that presents in HA with 15% or less of microporosity.


Oral Microbiology and Immunology | 2009

Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases

Sandra Y. Fukada; Tarcília Aparecida Silva; G. P. Garlet; Adalberto Luiz Rosa; J. S. da Silva; Fernando Q. Cunha

INTRODUCTION Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. METHODS Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). RESULTS Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CKbeta8/CCL23, and osteoprotegerin, which were significantly higher than in control. CONCLUSION Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.


Journal of Tissue Engineering and Regenerative Medicine | 2012

Pore size regulates cell and tissue interactions with PLGA–CaP scaffolds used for bone engineering

Luciana Sicchieri; Grasiele Edilaine Crippa; Paulo Tambasco de Oliveira; Adalberto Luiz Rosa

A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide‐co‐glycolide)–calcium phosphate (PLGA–CaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470–590, 590–850 and 850–1200 µm. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real‐time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470–590 µm. These results show that PLGA–CaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (∼1000 µm) and smaller (∼500 µm) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright


Journal of Dentistry | 2003

Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments.

Samuel Porfírio Xavier; Paulo Sérgio Perri de Carvalho; Adalberto Luiz Rosa

OBJECTIVES Alterations in the commercially pure titanium (cpTi) surface may be undertaken to improve its biological properties. The aim of this study is to investigate the biocompatibility of cpTi submitted to different surface treatments. METHODS The cpTi surfaces were prepared so that machined and blasted surfaces, either acid etched or not, were compared using rat bone marrow cells cultured to differentiated into osteoblast. For attachment evaluation, cells were cultured for 4 and 24h. Cell morphology was evaluated after 3 days. After 7, 14, and 21 days cell proliferation was evaluated. Total protein content and alkaline phosphatase (ALP) activity were evaluated after 14 and 21 days. For bone-like nodule formation, cells were cultured for 21 days. Data were compared by analysis of variance. RESULTS Cell attachment, cell morphology, cell proliferation, and ALP activity were not affected by surface treatments. Total protein content was reduced by blasted and acid etched surface. Bone-like nodule formation was significantly reduced by blasted, acid etched, and a combination of both blasted and acid etched surfaces. CONCLUSIONS Based on these results, it can be suggested that cpTi surfaces that were submitted only to machining treatment favor the final event of osteoblastic differentiation of the rat bone marrow cells, evidenced by increased bone-like nodule formation.


Brazilian Dental Journal | 2005

Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone

Adalberto Luiz Rosa

Dexamethasone (Dex) has been shown to induce osteoblast differentiation in several cell culture systems. This study investigated the effect of continuous and discontinuous treatment with Dex on osteoblast differentiation of human bone marrow stromal cells (BMSC). Primary culture and first passage were cultured in media with or without Dex 10(-7) M. During the culture period, cells were incubated at 37 degrees C in humidified atmosphere of 5% CO2 and 95% air. At 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity and bone-like formation were evaluated. Data were compared by two-way analysis of variance. Dex did not affect cell viability and total protein content, but reduced cell number. ALP activity and bone-like formation increased when only first passage or both primary culture and first passage were treated with Dex, in comparison to the groups that did not have contact with Dex after first passage. The results of this study indicate that, for human BMSC, continuous presence of Dex did not appear to be required for development of the osteoblast phenotype, but Dex must be present after first passage to allow osteoblast differentiation expressed by reduced cell proliferation and increased ALP activity and bone-like formation.


Journal of Materials Science: Materials in Medicine | 2012

Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering.

Sybele Saska; Raquel M. Scarel-Caminaga; Lucas Novaes Teixeira; Leonardo Pereira Franchi; Raquel Alves dos Santos; Ana Maria Minarelli Gaspar; Paulo Tambasco de Oliveira; Adalberto Luiz Rosa; Catarina Satie Takahashi; Younes Messaddeq; Sidney José Lima Ribeiro; Reinaldo Marchetto

The aim of this study was to characterize the physicochemical properties of bacterial cellulose (BC) membranes functionalized with osteogenic growth peptide (OGP) and its C-terminal pentapeptide OGP[10–14], and to evaluate in vitro osteoinductive potential in early osteogenesis, besides, to evaluate cytotoxic, genotoxic and/or mutagenic effects. Peptide incorporation into the BC membranes did not change the morphology of BC nanofibers and BC crystallinity pattern. The characterization was complemented by Raman scattering, swelling ratio and mechanical tests. In vitro assays demonstrated no cytotoxic, genotoxic or mutagenic effects for any of the studied BC membranes. Culture with osteogenic cells revealed no difference in cell morphology among all the membranes tested. Cell viability/proliferation, total protein content, alkaline phosphatase activity and mineralization assays indicated that BC-OGP membranes enabled the highest development of the osteoblastic phenotype in vitro. In conclusion, the negative results of cytotoxicity, genotoxicity and mutagenicity indicated that all the membranes can be employed for medical supplies, mainly in bone tissue engineering/regeneration, due to their osteoinductive properties.


Clinical Oral Implants Research | 2009

Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy

Adalberto Luiz Rosa; Grasiele Edilaine Crippa; Paulo Tambasco de Oliveira; Mário Taba; Louis-Philippe Lefebvre

OBJECTIVE This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. MATERIALS AND METHODS Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. RESULTS Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. CONCLUSION These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.


Clinical Oral Implants Research | 2010

Efficacy of a bioactive glass–ceramic (Biosilicate®) in the maintenance of alveolar ridges and in osseointegration of titanium implants

Virgílio M. Roriz; Adalberto Luiz Rosa; Oscar Peitl; Edgar Dutra Zanotto; Heitor Panzeri; Paulo Tambasco de Oliveira

OBJECTIVES The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate) and a bioactive glass (Biogran) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants. MATERIAL AND METHODS Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate, Biogran particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken. After 12 weeks a new surgery was performed to take the final ridge measurements and to insert bilaterally three Ti implants in biomaterial-implanted and control sites. Eight weeks post-Ti implant placement block biopsies were processed for histological and histomorphometric analysis. The percentages of bone-implant contact (BIC), of mineralized bone area between threads (BABT), and of mineralized bone area within the mirror area (BAMA) were determined. RESULTS The presence of Biosilicate or Biogran particles preserved alveolar ridge height without affecting its width. No significant differences in terms of BIC, BAMA, and BABT values were detected among Biosilicate, Biogran, and the non-implanted group. CONCLUSIONS The results of the present study indicate that filling of sockets with either Biosilicate or Biogran particles preserves alveolar bone ridge height and allows osseointegration of Ti implants.

Collaboration


Dive into the Adalberto Luiz Rosa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F.S. Oliveira

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.M. Beloti

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.S. Bellesini

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge