Adam Burton
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam Burton.
The Astronomical Journal | 2013
Gail Zasowski; Jennifer A. Johnson; Peter M. Frinchaboy; Steven R. Majewski; David L. Nidever; H. J. Rocha Pinto; Léo Girardi; Brett H. Andrews; S. D. Chojnowski; Kyle M. Cudworth; Kelly M. Jackson; Jeffrey A. Munn; M. F. Skrutskie; Rachael L. Beaton; Cullen H. Blake; Kevin R. Covey; Rohit Deshpande; Courtney R. Epstein; D. Fabbian; Scott W. Fleming; D. A. García–Hernández; A. Herrero; Sankaran Mahadevan; Sz. Mészáros; Mathias Schultheis; K. Sellgren; Ryan C. Terrien; J. van Saders; C. Allende Prieto; Dmitry Bizyaev
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The surveys broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEEs primary sample consists of ~105 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.
The Astronomical Journal | 2015
David L. Nidever; Jon A. Holtzman; Carlos Allende Prieto; Stephane Beland; Chad F. Bender; Dmitry Bizyaev; Adam Burton; Rohit Desphande; Scott W. Fleming; Ana G. Pérez; Frederick R. Hearty; Steven R. Majewski; Szabolcs Mészáros; Demitri Muna; Duy Cuong Nguyen; Ricardo P. Schiavon; Matthew Shetrone; Michael F. Skrutskie; Jennifer Sobeck; John C. Wilson
The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R~22,500), near-infrared (1.51-1.70 microns) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high S/N (>100 per half-resolution element) spectra provide accurate (~0.1 km/s) radial velocities, stellar atmospheric parameters, and precise (~0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3 degree diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.
The Astronomical Journal | 2017
Steven R. Majewski; Ricardo P. Schiavon; Peter M. Frinchaboy; Carlos Allende Prieto; Robert H. Barkhouser; Dmitry Bizyaev; Basil Blank; Sophia Brunner; Adam Burton; R. Carrera; S. Drew Chojnowski; Katia Cunha; Courtney R. Epstein; Greg Fitzgerald; Ana G. Pérez; Frederick R. Hearty; C. Henderson; Jon A. Holtzman; Jennifer A. Johnson; Charles R. Lam; James E. Lawler; Paul Maseman; Szabolcs Mészáros; Matthew J. Nelson; Duy Coung Nguyen; David L. Nidever; Marc H. Pinsonneault; Matthew Shetrone; Stephen A. Smee; Verne V. Smith
National Science Foundation [AST-1109178, AST-1616636]; Gemini Observatory; Spanish Ministry of Economy and Competitiveness [AYA-2011-27754]; NASA [NNX12AE17G]; Hungarian Academy of Sciences; Hungarian NKFI of the Hungarian National Research, Development and Innovation Office [K-119517]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science
Proceedings of SPIE | 2010
John C. Wilson; Frederick R. Hearty; Michael F. Skrutskie; Steven R. Majewski; Ricardo P. Schiavon; Daniel J. Eisenstein; James E. Gunn; Basil Blank; C. Henderson; Stephen A. Smee; Robert H. Barkhouser; Al Harding; Greg Fitzgerald; Todd M. Stolberg; Jim Arns; Matthew J. Nelson; Sophia Brunner; Adam Burton; Eric Walker; Charles R. Lam; Paul Maseman; Jim Barr; French Leger; Larry N. Carey; Nick MacDonald; Todd Horne; Erick T. Young; G. H. Rieke; Marcia J. Rieke; Thomas P. O'Brien
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) will use a dedicated 300-fiber, narrow-band (1.5-1.7 micron), high resolution (R~30,000), near-infrared spectrograph to survey approximately 100,000 giant stars across the Milky Way. This survey, conducted as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of kinematical and chemical enrichment histories of all Galactic stellar populations. The instrument, currently in fabrication, will be housed in a separate building adjacent to the 2.5 m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous technological challenges and innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation must be minimized, a large (290 mm x 475 mm elliptically-shaped recorded area) mosaic-VPH, an f/1.4 sixelement refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4 m x 2.3 m x 1.3 m.
Proceedings of SPIE | 2012
Suvrath Mahadevan; Lawrence W. Ramsey; Chad F. Bender; Ryan C. Terrien; Jason T. Wright; Sam Halverson; Frederick R. Hearty; Matthew J. Nelson; Adam Burton; Stephen L. Redman; Steven Neil Osterman; Scott A. Diddams; James F. Kasting; Michael Endl; Rohit Deshpande
We present the scientific motivation and conceptual design for the recently funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared (NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The HPF will cover the NIR Y and J bands to enable precise radial velocities to be obtained on mid M dwarfs, and enable the detection of low mass planets around these stars. The conceptual design is comprised of a cryostat cooled to 200K, a dual fiber-feed with a science and calibration fiber, a gold coated mosaic echelle grating, and a Teledyne Hawaii-2RG (H2RG) *NIR detector with a 1.7μm cutoff. A uranium-neon hollow-cathode lamp is the baseline wavelength calibration source, and we are actively testing laser frequency combs to enable even higher radial velocity precision. We will present the overall instrument system design and integration with the HET, and discuss major system challenges, key choices, and ongoing research and development projects to mitigate risk. We also discuss the ongoing process of target selection for the HPF survey.
Proceedings of SPIE | 2012
John C. Wilson; Frederick R. Hearty; M. F. Skrutskie; S. R. Majewski; Ricardo P. Schiavon; Daniel J. Eisenstein; James E. Gunn; Jon A. Holtzman; David L. Nidever; Bruce Gillespie; David H. Weinberg; Basil Blank; C. Henderson; Stephen A. Smee; Robert H. Barkhouser; Albert Harding; Stephen C. Hope; Greg Fitzgerald; Todd M. Stolberg; Jim Arns; Matthew J. Nelson; Sophia Brunner; Adam Burton; Eric Walker; Charles R. Lam; Paul Maseman; J. Barr; French Leger; Larry N. Carey; Nicholas MacDonald
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) uses a dedicated 300-fiber, narrow-band near-infrared (1.51-1.7 μm), high resolution (R~22,500) spectrograph to survey approximately 100,000 giant stars across the Milky Way. This three-year survey, in operation since late-summer 2011 as part of the Sloan Digital Sky Survey III (SDSS III), will revolutionize our understanding of the kinematical and chemical enrichment histories of all Galactic stellar populations. We present the performance of the instrument from its first year in operation. The instrument is housed in a separate building adjacent to the 2.5-m SDSS telescope and fed light via approximately 45-meter fiber runs from the telescope. The instrument design includes numerous innovations including a gang connector that allows simultaneous connection of all fibers with a single plug to a telescope cartridge that positions the fibers on the sky, numerous places in the fiber train in which focal ratio degradation had to be minimized, a large mosaic-VPH (290 mm x 475 mm elliptically-shaped recorded area), an f/1.4 six-element refractive camera featuring silicon and fused silica elements with diameters as large as 393 mm, three near-infrared detectors mounted in a 1 x 3 mosaic with sub-pixel translation capability, and all of these components housed within a custom, LN2-cooled, stainless steel vacuum cryostat with dimensions 1.4-m x 2.3-m x 1.3-m.
The Astronomical Journal | 2014
S. Drew Chojnowski; David G. Whelan; John P. Wisniewski; Steven R. Majewski; Matthew Hall; Matthew Shetrone; Rachael L. Beaton; Adam Burton; Guillermo J. Damke; S. S. Eikenberry; Sten Hasselquist; Jon A. Holtzman; Szabolcs Mészáros; David L. Nidever; Donald P. Schneider; John C. Wilson; Gail Zasowski; Dmitry Bizyaev; Howard J. Brewington; J. Brinkmann; Peter M. Frinchaboy; Karen Kinemuchi; Elena Malanushenko; Viktor Malanushenko; Moses Marchante; Daniel Oravetz; Kaike K. Pan; Audrey Simmons
APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.
Proceedings of SPIE | 2010
Sophia Brunner; Adam Burton; Jeff Crane; Bo Zhao; Frederick R. Hearty; John C. Wilson; Larry N. Carey; French Leger; M. F. Skrutskie; Ricardo P. Schiavon; Steven R. Majewski
Development of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) near-infrared spectrograph has motivated thorough investigation into the properties and performance of optical fibers. The fiber selected for APOGEE is a step index, multi-mode fiber, developed by PolyMicro, with a 120μm low OH, fused silica core, 25μm cladding, and 10μm buffer. The instrument design includes a 40 meter fiber run, connecting the spectrograph to the 2.5m Sloan Digital Sky Survey (SDSS) telescope, and an additional 2.5 meter fiber segment located within the instrument dewar, a vacuum-sealed, cryogenic environment. This light path is convoluted and includes many transitions and connections where the beam is susceptible irrevocable loss. To optimize the spectrograph performance it is necessary to minimize the losses incurred in the fiber system, especially those resulting in focal ratio degradation (FRD). The focus of this research has been to identify potential sources of loss and where applicable, select material components to minimize this effect. There is little previous documented work concerning the performance of optical fibers within this wavelength band (1.5-1.7μm). Consequently, the following includes comprehensive explanations of the APOGEE fiber system components, our experimental design and optical test bed set-up, beam alignment procedures, fiber terminating and polishing techniques, and results from our examination of FRD as correlated with source wavelength, fiber length and termination, and environmental conditions.
Proceedings of SPIE | 2014
Frederick R. Hearty; Eric Levi; Matthew J. Nelson; Suvrath Mahadevan; Adam Burton; Lawrence W. Ramsey; Chad F. Bender; Ryan C. Terrien; Samuel Halverson; Paul Robertson; Arpita Roy; Basil Blank; Ken Blanchard; Gudmundur Stefansson
HPF is an ultra-stable, precision radial velocity near infrared spectrograph with a unique environmental control scheme. The spectrograph will operate at a mid-range temperature of 180K, approximately half way between room temperature and liquid nitrogen temperature; it will be stable to sub -milli-Kelvin(mK) levels over a calibration cycle and a few mK over months to years. HPF‟s sensor is a 1.7 micron H2RG device by Teledyne. The environmental control boundary is a 9 m2 thermal enclosure that completely surrounds the optical train and produces a near blackbody cavity for all components. A large, pressure - stabilized liquid nitrogen tank provides the heat sink for the system via thermal straps while a multichannel resistive heater control system provides the stabilizing heat source. High efficiency multi-layer insulation blanketing provides the outermost boundary of the thermal enclosure to largely isolate the environmental system from ambient conditions. The cryostat, a stainless steel shell derived from the APOGEE design, surrounds the thermal enclosure and provides a stable, high quality vacuum environment. The full instrument will be housed in a passive „meat -locker‟ enclosure to add a degree of additional thermal stability and as well as protect the instrument. Effectiveness of this approach is being empirically demonstrated via long duration scale model testing. The full scale cryostat and environmental control system are being constructed for a 2016 delivery of the instrument to the Hobby-Eberly Telescope. This report describes the configuration of the hardware and the scale-model test results as well as projections for performance of the full system.
Proceedings of SPIE | 2010
Basil Blank; C. Henderson; John C. Wilson; Frederick R. Hearty; Michael F. Skrutskie; Thomas P. O'Brien; Steven R. Majewski; Ricardo P. Schiavon; Paul Maseman; Sophia Brunner; Adam Burton; Eric Walker
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a survey of all Galactic stellar populations that will employ an R=30,000 spectrograph operating in the near-infrared (1.5-1.7μm) wavelength range. The fiber-fed spectrograph is housed in a large (1.4m x 2.3m x 1.3m) stainless steel cryostat or Dewar that is LN2-cooled and will be located in a building near the 2.5m Sloan Digital Sky Survey (SDSS) telescope to which it will be coupled. The choice of shell material and configuration was an optimization among optics packaging, weight, strength, external dimensions, rigging and transportation, the available integration and testing room, and the ultimate instrument room at APO. Internals are fabricated of more traditional 6061-T6 aluminum which is well proven in cryogenic applications. An active thermal shield with MLI blanketing yields an extremely low thermal load of 45-50 watts for this ~3000 liter instrument. Cryostat design details are discussed with applicable constraints and trade decisions. APOGEE is one of four experiments that are part of Sloan Digital Sky Survey III (SDSS-III).