Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam C. Jones is active.

Publication


Featured researches published by Adam C. Jones.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula.

Adam C. Jones; Emily A. Monroe; Sheila Podell; Wolfgang R. Hess; Sven Klages; Eduardo Esquenazi; Sherry Niessen; Heather Hoover; Michael Rothmann; Roger S. Lasken; John R. Yates; Richard Reinhardt; Michael Kube; Michael D. Burkart; Eric E. Allen; Pieter C. Dorrestein; William H. Gerwick; Lena Gerwick

Filamentous cyanobacteria of the genus Lyngbya are important contributors to coral reef ecosystems, occasionally forming dominant cover and impacting the health of many other co-occurring organisms. Moreover, they are extraordinarily rich sources of bioactive secondary metabolites, with 35% of all reported cyanobacterial natural products deriving from this single pantropical genus. However, the true natural product potential and life strategies of Lyngbya strains are poorly understood because of phylogenetic ambiguity, lack of genomic information, and their close associations with heterotrophic bacteria and other cyanobacteria. To gauge the natural product potential of Lyngbya and gain insights into potential microbial interactions, we sequenced the genome of Lyngbya majuscula 3L, a Caribbean strain that produces the tubulin polymerization inhibitor curacin A and the molluscicide barbamide, using a combination of Sanger and 454 sequencing approaches. Whereas ∼293,000 nucleotides of the draft genome are putatively dedicated to secondary metabolism, this is far too few to encode a large suite of Lyngbya metabolites, suggesting Lyngbya metabolites are strain specific and may be useful in species delineation. Our analysis revealed a complex gene regulatory network, including a large number of sigma factors and other regulatory proteins, indicating an enhanced ability for environmental adaptation or microbial associations. Although Lyngbya species are reported to fix nitrogen, nitrogenase genes were not found in the genome or by PCR of genomic DNA. Subsequent growth experiments confirmed that L. majuscula 3L is unable to fix atmospheric nitrogen. These unanticipated life history characteristics challenge current views of the genus Lyngbya.


Natural Product Reports | 2010

The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria

Adam C. Jones; Emily A. Monroe; Eli B. Eisman; Lena Gerwick; David H. Sherman; William H. Gerwick

Cyanobacteria are abundant producers of natural products well recognized for their bioactivity and utility in drug discovery and biotechnology applications. In the last decade, characterization of several modular gene clusters that code for the biosynthesis of these compounds has revealed a number of unusual enzymatic reactions. In this article, we review several mechanistic transformations identified in marine cyanobacterial biosynthetic pathways, with an emphasis on modular polyketide synthase(PKS)/non-ribosomal peptide synthetase (NRPS) gene clusters. In selected instances, we also make comparisons between cyanobacterial gene clusters derived from marine and freshwater strains. We then provide an overview of recent developments in cyanobacterial natural products biosynthesis made available through genome sequencing and new advances in bioinformatics and genetics.


Current Opinion in Chemical Biology | 2009

New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria.

Adam C. Jones; Liangcai Gu; Carla M. Sorrels; David H. Sherman; William H. Gerwick

Cyanobacteria, among Earths oldest organisms, have evolved sophisticated biosynthetic pathways to produce a rich arsenal of bioactive natural products. In consequence, cyanobacterial secondary metabolites have been an incredibly fruitful source of lead compounds in drug discovery efforts. Investigations into the biochemistry responsible for the creation of these compounds, complemented by genome sequencing efforts, are revealing unique enzymatic mechanisms not described or rarely described elsewhere in the natural world. Herein, we discuss recent advances in understanding the biosynthesis of three cyanobacterial classes of natural product: mixed polyketide synthase/non ribosomal peptide synthetase (PKS/NRPS) metabolites, aromatic amino acid-derived alkaloids, and ribosomally encoded cyclic peptides. The unique biosynthetic mechanisms employed by cyanobacteria are inspiring new developments in heterologous gene expression and biotechnology.


Applied and Environmental Microbiology | 2011

Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses

Daniel W. Udwary; Erin A. Gontang; Adam C. Jones; Carla S. Jones; Andrew W. Schultz; Jaclyn M. Winter; Jane Y. Yang; Nicholas Beauchemin; Todd L. Capson; Benjamin R. Clark; Eduardo Esquenazi; Alessandra S. Eustáquio; Kelle C. Freel; Lena Gerwick; William H. Gerwick; David J. Gonzalez; Wei-Ting Liu; Karla L. Malloy; Katherine N. Maloney; Markus Nett; Joshawna K. Nunnery; Kevin Penn; Alejandra Prieto-Davó; Thomas L. Simmons; Sara Weitz; Micheal C. Wilson; Louis S. Tisa; Pieter C. Dorrestein; Bradley S. Moore

ABSTRACT Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.


PLOS ONE | 2013

Phage P1-Derived Artificial Chromosomes Facilitate Heterologous Expression of the FK506 Gene Cluster

Adam C. Jones; Bertolt Gust; Andreas Kulik; Lutz Heide; Mark J. Buttner; Mervyn J. Bibb

We describe a procedure for the conjugative transfer of phage P1-derived Artificial Chromosome (PAC) library clones containing large natural product gene clusters (≥70 kilobases) to Streptomyces coelicolor strains that have been engineered for improved heterologous production of natural products. This approach is demonstrated using the gene cluster for FK506 (tacrolimus), a clinically important immunosuppressant of high commercial value. The entire 83.5 kb FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488 present in one 130 kb PAC clone was introduced into four different S. coelicolor derivatives and all produced FK506 and smaller amounts of the related compound FK520. FK506 yields were increased by approximately five-fold (from 1.2 mg L-1 to 5.5 mg L-1) in S. coelicolor M1146 containing the FK506 PAC upon over-expression of the FK506 LuxR regulatory gene fkbN. The PAC-based gene cluster conjugation methodology described here provides a tractable means to evaluate and manipulate FK506 biosynthesis and is readily applicable to other large gene clusters encoding natural products of interest to medicine, agriculture and biotechnology.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Temporal dynamics of natural product biosynthesis in marine cyanobacteria

Eduardo Esquenazi; Adam C. Jones; Tara Byrum; Pieter C. Dorrestein; William H. Gerwick

Sessile marine organisms are prolific sources of biologically active natural products. However, these compounds are often found in highly variable amounts, with the abiotic and biotic factors governing their production remaining poorly understood. We present an approach that permits monitoring of in vivo natural product production and turnover using mass spectrometry and stable isotope (15N) feeding with small cultures of various marine strains of the natural product-rich cyanobacterial genus Lyngbya. This temporal comparison of the amount of in vivo 15N labeling of nitrogen-containing metabolites represents a direct way to discover and evaluate factors influencing natural product biosynthesis, as well as the timing of specific steps in metabolite assembly, and is a strong complement to more traditional in vitro studies. Relative quantification of 15N labeling allowed the concurrent measurement of turnover rates of multiple natural products from small amounts of biomass. This technique also afforded the production of the neurotoxic jamaicamides to be more carefully studied, including an assessment of how jamaicamide turnover compares with filament growth rate and primary metabolism and provided new insights into the biosynthetic timing of jamaicamide A bromination. This approach should be valuable in determining how environmental factors affect secondary metabolite production, ultimately yielding insight into the energetic balance among growth, primary production, and secondary metabolism, and thus aid in the development of methods to improve compound yields for biomedical or biotechnological applications.


FEBS Journal | 2012

Evaluation of Streptomyces coelicolor A3(2) as a heterologous expression host for the cyanobacterial protein kinase C activator lyngbyatoxin A

Adam C. Jones; Sabine Ottilie; Alessandra S. Eustáquio; Daniel J. Edwards; Lena Gerwick; Bradley S. Moore; William H. Gerwick

Filamentous marine cyanobacteria are extremely rich sources of bioactive natural products and often employ highly unusual biosynthetic enzymes in their assembly. However, the current lack of techniques for stable DNA transfer into these filamentous organisms, combined with the absence of heterologous expression strategies for nonribosomal cyanobacterial gene clusters, prohibit the creation of mutant strains or the heterologous production of these cyanobacterial compounds in other bacteria. In this study, we evaluated the capability of a derivative of the model actinomycete Streptomyces coelicolor A3(2) to express enzymes involved in the biosynthesis of the protein kinase C activator lyngbyatoxin A from a Hawaiian strain of Moorea producta (previously classified as Lyngbya majuscula). Despite large differences in GC content between these two bacteria and the presence of rare TTA/UUA leucine codons in lyngbyatoxin ORFs we were able to achieve expression of the cytochrome P450 monooxygenase LtxB and reverse prenyltransferase LtxC in S. coelicolor M512 and confirmed the in vitro functionality of S. coelicolor overexpressed LtxC. Attempts to express the entire lyngbyatoxin A gene cluster in S. coelicolor M512 were not successful because of transcript termination observed for the ltxA gene, which encodes a large nonribosomal peptide synthetase. However, these attempts did show a detectable level of cyanobacterial promoter recognition in Streptomyces. Successful expression of lyngbyatoxin A proteins in Streptomyces provides a new platform for biochemical investigation of natural product enzymes from Moorea strains.


BMC Microbiology | 2009

Transcriptional analysis of the jamaicamide gene cluster from the marine cyanobacterium Lyngbya majuscula and identification of possible regulatory proteins

Adam C. Jones; Lena Gerwick; David J. Gonzalez; Pieter C. Dorrestein; William H. Gerwick

BackgroundThe marine cyanobacterium Lyngbya majuscula is a prolific producer of bioactive secondary metabolites. Although biosynthetic gene clusters encoding several of these compounds have been identified, little is known about how these clusters of genes are transcribed or regulated, and techniques targeting genetic manipulation in Lyngbya strains have not yet been developed. We conducted transcriptional analyses of the jamaicamide gene cluster from a Jamaican strain of Lyngbya majuscula, and isolated proteins that could be involved in jamaicamide regulation.ResultsAn unusually long untranslated leader region of approximately 840 bp is located between the jamaicamide transcription start site (TSS) and gene cluster start codon. All of the intergenic regions between the pathway ORFs were transcribed into RNA in RT-PCR experiments; however, a promoter prediction program indicated the possible presence of promoters in multiple intergenic regions. Because the functionality of these promoters could not be verified in vivo, we used a reporter gene assay in E. coli to show that several of these intergenic regions, as well as the primary promoter preceding the TSS, are capable of driving β-galactosidase production. A protein pulldown assay was also used to isolate proteins that may regulate the jamaicamide pathway. Pulldown experiments using the intergenic region upstream of jamA as a DNA probe isolated two proteins that were identified by LC-MS/MS. By BLAST analysis, one of these had close sequence identity to a regulatory protein in another cyanobacterial species. Protein comparisons suggest a possible correlation between secondary metabolism regulation and light dependent complementary chromatic adaptation. Electromobility shift assays were used to evaluate binding of the recombinant proteins to the jamaicamide promoter region.ConclusionInsights into natural product regulation in cyanobacteria are of significant value to drug discovery and biotechnology. To our knowledge, this is the first attempt to characterize the transcription and regulation of secondary metabolism in a marine cyanobacterium. If jamaicamide is light regulated, this mechanism would be similar to other cyanobacterial natural product gene clusters such as microcystin LR. These findings could aid in understanding and potentially assisting the management of toxin production by Lyngbya in the environment.


Environment Systems and Decisions | 2016

Diplomacy for science: strategies to promote international collaboration

Igor Linkov; Sankar Basu; Cathleen Fisher; N.B. Jackson; Adam C. Jones; Maija M. Kuklja; Benjamin D. Trump

Technology innovation is an increasingly globalized exercise with dramatic consequences for scientific and diplomatic goals alike, and requires enhanced participation and integration of scientists and science-minded diplomats within diplomatic missions to advance shared policy goals. This more general problem is addressed in the present article by focusing on recent collaborations between U.S. and German scientists, including several of the coauthors.


Chemistry & Biology | 2011

Elegant Metabolite Biosynthesis

Adam C. Jones; Emily A. Monroe; William H. Gerwick

Hormaomycin, an NRPS-produced bacterial metabolite involved in microbial signaling, possesses several remarkable structural features. The study by Höfer et al. (2011) employed a range of methodologies to explore and ultimately understand the elaborate biosynthesis of this complex natural product.

Collaboration


Dive into the Adam C. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily A. Monroe

William Paterson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge