Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Cornish is active.

Publication


Featured researches published by Adam Cornish.


Nature Communications | 2015

Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells

Can Kucuk; Bei Jiang; Xiaozhou Hu; Zhang Wy; John K. C. Chan; Wenming Xiao; Nathan A. Lack; Can Alkan; John C. Williams; Kendra N. Avery; Painar Kavak; Anna Scuto; Emel Sen; Philippe Gaulard; Lou Staudt; Javeed Iqbal; Weiwei Zhang; Adam Cornish; Qiang Gong; Qunpei Yang; Hong Sun; Francesco d'Amore; Sirpa Leppä; Liu Wp; Kai Fu; Laurence de Leval; Timothy W. McKeithan; Wing C. Chan

Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy.


Biology Direct | 2014

A new rhesus macaque assembly and annotation for next-generation sequencing analyses

Aleksey V. Zimin; Adam Cornish; Mnirnal D Maudhoo; Robert M Gibbs; Xiongfei Zhang; Sanjit Pandey; Daniel Meehan; Kristin Wipfler; Steven E. Bosinger; Zachary P. Johnson; Gregory K. Tharp; Guillaume Marçais; Michael Roberts; Betsy Ferguson; Howard S. Fox; Todd J. Treangen; James A. Yorke; Robert B. Norgren

BackgroundThe rhesus macaque (Macaca mulatta) is a key species for advancing biomedical research. Like all draft mammalian genomes, the draft rhesus assembly (rheMac2) has gaps, sequencing errors and misassemblies that have prevented automated annotation pipelines from functioning correctly. Another rhesus macaque assembly, CR_1.0, is also available but is substantially more fragmented than rheMac2 with smaller contigs and scaffolds. Annotations for these two assemblies are limited in completeness and accuracy. High quality assembly and annotation files are required for a wide range of studies including expression, genetic and evolutionary analyses.ResultsWe report a new de novo assembly of the rhesus macaque genome (MacaM) that incorporates both the original Sanger sequences used to assemble rheMac2 and new Illumina sequences from the same animal. MacaM has a weighted average (N50) contig size of 64 kilobases, more than twice the size of the rheMac2 assembly and almost five times the size of the CR_1.0 assembly. The MacaM chromosome assembly incorporates information from previously unutilized mapping data and preliminary annotation of scaffolds. Independent assessment of the assemblies using Ion Torrent read alignments indicates that MacaM is more complete and accurate than rheMac2 and CR_1.0. We assembled messenger RNA sequences from several rhesus tissues into transcripts which allowed us to identify a total of 11,712 complete proteins representing 9,524 distinct genes. Using a combination of our assembled rhesus macaque transcripts and human transcripts, we annotated 18,757 transcripts and 16,050 genes with complete coding sequences in the MacaM assembly. Further, we demonstrate that the new annotations provide greatly improved accuracy as compared to the current annotations of rheMac2. Finally, we show that the MacaM genome provides an accurate resource for alignment of reads produced by RNA sequence expression studies.ConclusionsThe MacaM assembly and annotation files provide a substantially more complete and accurate representation of the rhesus macaque genome than rheMac2 or CR_1.0 and will serve as an important resource for investigators conducting next-generation sequencing studies with nonhuman primates.ReviewersThis article was reviewed by Dr. Lutz Walter, Dr. Soojin Yi and Dr. Kateryna Makova.


BioMed Research International | 2015

A Comparison of Variant Calling Pipelines Using Genome in a Bottle as a Reference

Adam Cornish; Chittibabu Guda

High-throughput sequencing, especially of exomes, is a popular diagnostic tool, but it is difficult to determine which tools are the best at analyzing this data. In this study, we use the NIST Genome in a Bottle results as a novel resource for validation of our exome analysis pipeline. We use six different aligners and five different variant callers to determine which pipeline, of the 30 total, performs the best on a human exome that was used to help generate the list of variants detected by the Genome in a Bottle Consortium. Of these 30 pipelines, we found that Novoalign in conjunction with GATK UnifiedGenotyper exhibited the highest sensitivity while maintaining a low number of false positives for SNVs. However, it is apparent that indels are still difficult for any pipeline to handle with none of the tools achieving an average sensitivity higher than 33% or a Positive Predictive Value (PPV) higher than 53%. Lastly, as expected, it was found that aligners can play as vital a role in variant detection as variant callers themselves.


American Journal of Pathology | 2013

HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms.

Can Kucuk; Xiaozhou Hu; Javeed Iqbal; Philippe Gaulard; David Klinkebiel; Adam Cornish; Bhavana J. Dave; Wing C. Chan

HACE1 is an E3 ubiquitin ligase located in 6q21, the genomic region frequently deleted in natural killer (NK) cell malignancies. Here, we report HACE1 as a candidate tumor suppressor gene silenced through a combination of deletion and cytosine phosphate guanine island hypermethylation. We detected deletion of HACE1 in malignant NK cell lines (6 of 9, 67%) and primary biopsies (5 of 15, 33%) by quantitative PCR, with most of the specimen showing cytosine phosphate guanine island hypermethylation in the remaining allele, leading to low mRNA transcription. The ectopic expression of HACE1 in an HACE1-null NK cell line led to apoptosis and G2/M cell cycle arrest. Moreover, HACE1 expression was up-regulated in IL-2-activated normal NK cells and NK cells cocultured with an engineered NK cell target, K562 Clone 9.mbIL21, suggesting its role in the regulation of NK cell homeostasis. In conclusion, HACE1 is another potent tumor suppressor gene located within the 6q21 region, and loss of function of multiple tumor suppressor genes within 6q21 may be a critical determinant of NK cell lymphomagenesis.


BMC Genomics | 2016

Exome screening to identify loss-of-function mutations in the rhesus macaque for development of preclinical models of human disease

Adam Cornish; Robert M Gibbs; Robert B. Norgren

BackgroundExome sequencing has been utilized to identify genetic variants associated with disease in humans. Identification of loss-of-function mutations with exome sequencing in rhesus macaques (Macaca mulatta) could lead to valuable animal models of genetic disease. Attempts have been made to identify variants in rhesus macaques by aligning exome data against the rheMac2 draft genome. However, such efforts have been impaired due to the incompleteness and annotation errors associated with rheMac2. We wished to determine whether aligning exome reads against our new, improved rhesus genome, MacaM, could be used to identify high impact, loss-of-function mutations in rhesus macaques that would be relevant to human disease.ResultsWe compared alignments of exome reads from four rhesus macaques, the reference animal and three unrelated animals, against rheMac2 and MacaM. Substantially more reads aligned against MacaM than rheMac2. We followed the Broad Institute’s Best Practice guidelines for variant discovery which utilizes the Genome Analysis Toolkit to identify high impact mutations. When rheMac2 was used as the reference genome, a large number of apparent false positives were identified. When MacaM was used as the reference genome, the number of false positives was greatly reduced. After examining the variant analyses conducted with MacaM as reference genome, we identified two putative loss-of-function mutations, in the heterozygous state, in genes related to human health. Sanger sequencing confirmed the presence of these mutations. We followed the transmission of one of these mutations (in the butyrylthiocholine gene) through three generations of rhesus macaques. Further, we demonstrated a functional decrease in butyrylthiocholinesterase activity similar to that observed in human heterozygotes with loss-of-function mutations in the same gene.ConclusionsThe new MacaM genome can be effectively utilized to identify loss-of-function mutations in rhesus macaques without generating a high level of false positives. In some cases, heterozygotes may be immediately useful as models of human disease. For diseases where homozygous mutants are needed, directed breeding of loss-of-function heterozygous animals could be used to create rhesus macaque models of human genetic disease. The approach we describe here could be applied to other mammals, but only if their genomes have been improved beyond draft status.


Scientific Reports | 2017

Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data

Qiang Gong; Chao Wang; Weiwei Zhang; Javeed Iqbal; Yang Hu; Timothy C. Greiner; Adam Cornish; Jo Heon Kim; Raul Rabadan; Francesco Abate; Xin Wang; Giorgio Inghirami; Timothy W. McKeithan; Wing C. Chan

T-cell clonality of peripheral T-cell lymphoma (PTCL) is routinely evaluated with a PCR-based method using genomic DNA. However, there are limitations with this approach. The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and T-cell antigen receptor (TCR) repertoire of the neoplastic T-cells in 108 PTCL samples. TCR transcripts, including complementarity-determining region 3 (CDR3) sequences, were assessed. In normal T cells, the CDR3 sequences were extremely diverse, without any clonotype representing more than 2% of the overall TCR population. Dominant clones could be identified in 65 out of 76 PTCL cases (86%) with adequate TCR transcript expression. In monoclonal cases, the dominant clone varied between 11% and 99% of TCRβ transcripts. No unique Vα or Vβ usage was observed. Small T-cell clones were often observed in T- and NK-cell tumors in a percentage higher than observed in reactive conditions. γ chain expression was very low in tumors expressing TCRαβ, but its expression level was high and clonality was detected in a TCRγδ expressing tumor. NK cell lymphoma (NKCL) did not express significant levels of TCR Vβ or Vγ genes. RNA-seq is a useful tool for detecting and characterizing clonal TCR rearrangements in PTCL.


Oncotarget | 2018

Comparative Molecular Characterization of Typical and Exceptional Responders in Glioblastoma

Kristin Wipfler; Adam Cornish; Chittibabu Guda

Glioblastoma (GBM) is the most common and the deadliest type of primary brain tumor, with a median survival time of only 15 months despite aggressive treatment. Although most patients have an extremely poor prognosis, a relatively small number of patients survive far beyond the median survival time. Investigation of these exceptional responders has sparked a great deal of interest and is becoming an important focus in the field of cancer research. To investigate the molecular differences between typical and exceptional responders in GBM, comparative analyses of somatic mutations, copy number, methylation, and gene expression datasets from The Cancer Genome Atlas were performed, and the results of these analyses were integrated via gene ontology and pathway analyses to assess the functional significance of the differential aberrations. Less severe copy number loss of CDKN2A, lower expression of CXCL8, and FLG mutations are all associated with an exceptional response. Typical responders are characterized by upregulation of NF-κB signaling and of pro-inflammatory cytokines, while exceptional responders are characterized by upregulation of Alzheimer’s and Parkinson’s disease pathways as well as of genes involved in synaptic transmission. The upregulated pathways and processes in typical responders are consistently associated with more aggressive tumor phenotypes, while those in the exceptional responders suggest a retained ability in tumor cells to undergo cell death in response to treatment. With the upcoming launch of the National Cancer Institute’s Exceptional Responders Initiative, similar studies with much larger sample sizes will likely become possible, hopefully providing even more insight into the molecular differences between typical and exceptional responders.


American Journal of Pathology | 2016

Diagnostic and Biological Significance of KIR Expression Profile Determined by RNA-Seq in Natural Killer/T-Cell Lymphoma

Can Kucuk; Xiaozhou Hu; Qiang Gong; Bei Jiang; Adam Cornish; Philippe Gaulard; Timothy W. McKeithan; Wing C. Chan


Blood | 2013

Frequent Activating Mutations Of JAK-STAT Pathway Genes In Natural Killer Cell Lymphomas

Bei Jiang; Xiaozhou Hu; Philippe Gaulard; Zhang Wy; Wenming Xiao; Louis M. Staudt; Javeed Iqbal; Weiwei Zhang; Adam Cornish; Pınar Kavak; Can Alkan; Qiang Gong; Qunpei Yang; Hong Sun; Francesco d'Amore; Sirpa Leppä; Liu Wp; Timothy W. McKeithan; Wing C. Chan


Blood | 2015

Assessment of T-Cell Receptor Repertoire and Clonal Expansion in Peripheral T-Cell Lymphoma Using RNA-Seq Data

Chao Wang; Qiang Gong; Weiwei Zhang; Javeed Iqbal; Yang Hu; Timothy C. Greiner; Adam Cornish; Raul Rabadan; Francesco Abate; Xin Wang; Giorgio Inghirami; McKeithan W. Timothy; Wing C. Chan

Collaboration


Dive into the Adam Cornish's collaboration.

Top Co-Authors

Avatar

Wing C. Chan

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Javeed Iqbal

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy W. McKeithan

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Weiwei Zhang

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaozhou Hu

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bei Jiang

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Can Kucuk

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chittibabu Guda

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qiang Gong

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge