Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam DeZure is active.

Publication


Featured researches published by Adam DeZure.


The New England Journal of Medicine | 2017

Chimpanzee Adenovirus Vector Ebola Vaccine - Preliminary Report.

Julie E. Ledgerwood; Adam DeZure; Daphne Stanley; Laura Novik; Mary E. Enama; Nina M. Berkowitz; Zonghui Hu; Gyan Joshi; Aurélie Ploquin; Sandra Sitar; Ingelise J. Gordon; Sarah A. Plummer; LaSonji A. Holman; Cynthia S. Hendel; Galina Yamshchikov; François Roman; Alfredo Nicosia; Stefano Colloca; Riccardo Cortese; Robert T. Bailer; Richard M. Schwartz; Mario Roederer; John R. Mascola; Richard A. Koup; Nancy J. Sullivan; Barney S. Graham; Abstr Act

Background The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication‐defective recombinant chimpanzee adenovirus type 3–vectored ebolavirus vaccine (cAd3‐EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. Methods We conducted a phase 1, dose‐escalation, open‐label trial of cAd3‐EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×1010 particle units or 2×1011 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer‐term vaccine durability was assessed at 48 weeks after vaccination. Results In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×1011 particle‐unit dose. Glycoprotein‐specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×1011 particle‐unit dose than in the group that received the 2×1010 particle‐unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein‐specific T‐cell responses were more frequent among those who received the 2×1011 particle‐unit dose than among those who received the 2×1010 particle‐unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×1011 particle‐unit dose. Conclusions Reactogenicity and immune responses to cAd3‐EBO vaccine were dose‐dependent. At the 2×1011 particle‐unit dose, glycoprotein Zaire–specific antibody responses were in the range reported to be associated with vaccine‐induced protective immunity in challenge studies involving nonhuman primates, and responses were sustained to week 48. Phase 2 studies and efficacy trials assessing cAd3‐EBO are in progress. (Funded by the Intramural Research Program of the National Institutes of Health; VRC 207 ClinicalTrials.gov number, NCT02231866.)


Science Translational Medicine | 2015

Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection

Rebecca M. Lynch; Eli Boritz; Emily E. Coates; Adam DeZure; Patrick Madden; Pamela Costner; Mary E. Enama; Sarah Plummer; LaSonji A. Holman; Cynthia S. Hendel; Ingelise J. Gordon; Joseph P. Casazza; Michelle Conan-Cibotti; Stephen A. Migueles; Randall Tressler; Robert T. Bailer; Adrian B. McDermott; Sandeep Narpala; Sijy O’Dell; Gideon Wolf; Jeffrey D. Lifson; Brandie A. Freemire; Robert J. Gorelick; Janardan P. Pandey; Sarumathi Mohan; Nicolas Chomont; Rémi Fromentin; Tae-Wook Chun; Anthony S. Fauci; Richard M. Schwartz

A single infusion with broadly neutralizing antibody VRC01 resulted in lowered plasma virus load in HIV-1–infected subjects. Passive aggression for HIV Antibodies that neutralize HIV could add to the therapeutic arsenal to prevent and treat disease. Lynch et al. have now tested one such antibody—VRC01—in HIV-infected individuals. Although little difference was observed in viral reservoir in individuals on antiretroviral therapy, plasma viremia was reduced in untreated subjects with a single infusion of VRC01, preferentially suppressing neutralization-sensitive strains. Passive immunization with neutralizing antibodies could therefore aid in viral suppression in HIV-infected individuals. Passive immunization with HIV-1–neutralizing monoclonal antibodies (mAbs) is being considered for prevention and treatment of HIV-1 infection. As therapeutic agents, mAbs could be used to suppress active virus replication, maintain suppression induced by antiretroviral therapy (ART), and/or decrease the size of the persistent virus reservoir. We assessed the impact of VRC01, a potent human mAb targeting the HIV-1 CD4 binding site, on ART-treated and untreated HIV-1–infected subjects. Among six ART-treated individuals with undetectable plasma viremia, two infusions of VRC01 did not reduce the peripheral blood cell–associated virus reservoir measured 4 weeks after the second infusion. In contrast, six of eight ART-untreated, viremic subjects infused with a single dose of VRC01 experienced a 1.1 to 1.8 log10 reduction in plasma viremia. The two subjects with minimal responses to VRC01 were found to have predominantly VRC01-resistant virus before treatment. Notably, two subjects with plasma virus load <1000 copies/ml demonstrated virus suppression to undetectable levels for over 20 days until VRC01 levels declined. Among the remaining four subjects with baseline virus loads between 3000 and 30,000 copies, viremia was only partially suppressed by mAb infusion, and we observed strong selection pressure for the outgrowth of less neutralization-sensitive viruses. In summary, a single infusion of mAb VRC01 significantly decreased plasma viremia and preferentially suppressed neutralization-sensitive virus strains. These data demonstrate the virological effect of this neutralizing antibody and highlight the need for combination strategies to maintain virus suppression.


Clinical and Experimental Immunology | 2015

Safety, pharmacokinetics and neutralization of the broadly neutralizing HIV-1 human monoclonal antibody VRC01 in healthy adults

Julie E. Ledgerwood; Emily E. Coates; Galina Yamshchikov; Jamie G. Saunders; LaSonji A. Holman; Mary E. Enama; Adam DeZure; Rebecca M. Lynch; Ingelise J. Gordon; Sarah A. Plummer; Cynthia S. Hendel; Amarendra Pegu; Michelle Conan-Cibotti; Sandra Sitar; Robert T. Bailer; Sandeep Narpala; Adrian B. McDermott; Mark K. Louder; Sijy O'Dell; Sarumathi Mohan; Janardan P. Pandey; Richard M. Schwartz; Zonghui Hu; Richard A. Koup; Edmund V. Capparelli; John R. Mascola; Barney S. Graham

VRC‐HIVMAB060‐00‐AB (VRC01) is a broadly neutralizing HIV‐1 monoclonal antibody (mAb) isolated from the B cells of an HIV‐infected patient. It is directed against the HIV‐1 CD4 binding site and is capable of potently neutralizing the majority of diverse HIV‐1 strains. This Phase I dose‐escalation study in healthy adults was conducted at the National Institutes of Health (NIH) Clinical Center (Bethesda, MD, USA). Primary objectives were the safety, tolerability and pharmacokinetics (PK) of VRC01 intravenous (i.v.) infusion at 5, 20 or 40 mg/kg, given either once (20 mg/kg) or twice 28 days apart (all doses), and of subcutaneous (s.c.) delivery at 5 mg/kg compared to s.c. placebo given twice, 28 days apart. Cumulatively, 28 subjects received 43 VRC01 and nine received placebo administrations. There were no serious adverse events or dose‐limiting toxicities. Mean 28‐day serum trough concentrations after the first infusion were 35 and 57 μg/ml for groups infused with 20 mg/kg (n = 8) and 40 mg/kg (n = 5) doses, respectively. Mean 28‐day trough concentrations after the second infusion were 56 and 89 μg/ml for the same two doses. Over the 5–40 mg/kg i.v. dose range (n = 18), the clearance was 0·016 l/h and terminal half‐life was 15 days. After infusion VRC01 retained expected neutralizing activity in serum, and anti‐VRC01 antibody responses were not detected. The human monoclonal antibody (mAb) VRC01 was well tolerated when delivered i.v. or s.c. The mAb demonstrated expected half‐life and pharmacokinetics for a human immunoglobulin G. The safety and PK results support and inform VRC01 dosing schedules for planning HIV‐1 prevention efficacy studies.


Nature Medicine | 2016

Protection against malaria at 1 year and immune correlates following PfSPZ vaccination

Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee-Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha K C; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders

An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 105 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21–25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks. To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-γ-producing CD8 T cells were present at ∼100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection

Kirsten E. Lyke; Andrew S. Ishizuka; Andrea A. Berry; Sumana Chakravarty; Adam DeZure; Mary E. Enama; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha Kc; Tooba Murshedkar; Floreliz Mendoza; Ingelise J. Gordon; Kathryn L. Zephir; LaSonji A. Holman; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders; Nina M. Berkowitz; Barbara J. Flynn; Martha Nason; Lindsay S. Garver

Significance A highly effective malaria vaccine capable of long-term protection against genetically diverse strains is urgently needed. Here, we demonstrate that a three-dose regimen of a live attenuated whole-parasite malaria vaccine conferred durable sterile protection through 33 weeks in ∼50% of subjects against a controlled human malaria infection strain that is heterologous to the vaccine strain. Prior studies by others and us have shown that T cells are critical to mediating sterile protection after live-attenuated malaria vaccination. Here, we provide evidence that this Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine) induces antigen-specific IFN-γ-producing CD8 and CD4 T cells that recognize both the homologous and the heterologous Pf strain. A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 105 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35–87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls (P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36–99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.


npj Vaccines | 2017

An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial

Adam DeZure; Emily E. Coates; Zonghui Hu; Galina Yamshchikov; Kathryn L. Zephir; Mary E. Enama; Sarah Plummer; Ingelise J. Gordon; Florence Kaltovich; Sarah F. Andrews; Adrian B. McDermott; Michelle C. Crank; Richard A. Koup; Richard M. Schwartz; Robert T. Bailer; Xiangjie Sun; John R. Mascola; Terrence M. Tumpey; Barney S. Graham; Julie E. Ledgerwood

A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone.Avian influenza: A vaccine for a deadly emergent strainA vaccine candidate to treat a deadly subtype of avian influenza was shown to induce protective antibodies in initial clinical trials. As of March 2017, avian influenza strain A/H7N9 has killed 497 people since 2013, with 1349 confirmed cases. Julie Ledgerwood and her team from the United States’ National Institutes of Health in collaboration with colleagues at the Centers for Disease Control and Prevention tested their two-stage vaccine protocol in humans, showing it to be effective and safe. The vaccine consists of an initial injection of viral DNA, which ‘primes’ the immune system to the pathogen, followed by a follow-up injection of an inactivated purified viral protein, which further boosts the host’s production of protective antibodies. The study shows the viability of this vaccine regimen and suggests further investigation into its appropriateness for treating avian influenza in humans.


Nature Medicine | 2016

Corrigendum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination

Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee-Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha K C; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders

Nat. Med.; 10.1038/nm.4110; corrected online 18 May 2016 In the version of this article initially published online, the authors omitted a funding source, The Bill and Melinda Gates Foundation (Investment ID: 24922). The error has been corrected for the print, PDF and HTML versions of this article.


The Vaccine Book (Second Edition) | 2016

Vaccines for Emerging Viral Diseases

Adam DeZure; Barney S. Graham

Abstract Infectious diseases continue to plague mankind and evolve to keep pace with the efforts to control them. Sir William Osler captured the ongoing fear of infectious pathogens when he said, “Humanity has but three great enemies: fever, famine, and war; of these by far the greatest, by far the most terrible, is fever.” Despite the significant impact of antimicrobials and vaccines on public health, there has only been one major human pathogen eradicated—variola virus, the agent of smallpox. In its place have been a series of new and reemerging microbes responsible for isolated infections, regional outbreaks, and global pandemics. Bacterial, fungal, and parasitic pathogens have the capacity to cause widespread epidemics such as the “Black Death” caused by Yersinia pestis in 14th century Europe. However, bacteria, fungi, and parasites are less likely to cause widespread human pandemics at this point in history and are less amenable to vaccine strategies than viral diseases. Focusing on viruses, a catalog of newly discovered human pathogens from the beginning of the 20th century shows a predictable and nearly linear rate of new agents discovered over time. However, of the more than 100 virus families, only 22 have been associated with human infections, a number that seems to have plateaued. In the chapter we will concentrate on vaccines for emerging viral diseases.


Nature Medicine | 2016

Erratum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination (Nature Medicine (2016) DOI: 10.1038/nm.4110))

Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; La Sonji A Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Ming Lin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; K. C. Natasha; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders

Nat. Med.; 10.1038/nm.4110; corrected online 18 May 2016 In the version of this article initially published online, the authors omitted a funding source, The Bill and Melinda Gates Foundation (Investment ID: 24922). The error has been corrected for the print, PDF and HTML versions of this article.


Nature Medicine | 2016

Erratum: Corrigendum: Protection against malaria at 1 year and immune correlates following PfSPZ vaccination

Andrew S. Ishizuka; Kirsten E. Lyke; Adam DeZure; Andrea A. Berry; Thomas L. Richie; Floreliz Mendoza; Mary E. Enama; Ingelise J. Gordon; Lee-Jah Chang; Uzma N Sarwar; Kathryn L. Zephir; LaSonji A. Holman; Eric R. James; Peter F. Billingsley; Anusha Gunasekera; Sumana Chakravarty; Anita Manoj; Minglin Li; Adam Ruben; Tao Li; Abraham G. Eappen; Richard E. Stafford; Natasha K C; Tooba Murshedkar; Hope DeCederfelt; Sarah Plummer; Cynthia S. Hendel; Laura Novik; Pamela Costner; Jamie G. Saunders

Nat. Med.; 10.1038/nm.4110; corrected online 18 May 2016 In the version of this article initially published online, the authors omitted a funding source, The Bill and Melinda Gates Foundation (Investment ID: 24922). The error has been corrected for the print, PDF and HTML versions of this article.

Collaboration


Dive into the Adam DeZure's collaboration.

Top Co-Authors

Avatar

Ingelise J. Gordon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mary E. Enama

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia S. Hendel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

LaSonji A. Holman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah Plummer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jamie G. Saunders

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kathryn L. Zephir

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura Novik

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pamela Costner

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge