Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam E. Frampton is active.

Publication


Featured researches published by Adam E. Frampton.


PLOS ONE | 2012

MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors.

Long R. Jiao; Adam E. Frampton; Jimmy Jacob; Loredana Pellegrino; Jonathan Krell; Georgios Giamas; Nicole Tsim; Panagiotis Vlavianos; Patrizia Cohen; Raida Ahmad; Andreas Keller; Nagy Habib; Justin Stebbing; Leandro Castellano

Background MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. Methods Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. Results Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a “seedless” binding site within its 3′UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. Conclusions Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers.


Gastroenterology | 2014

MicroRNAs Cooperatively Inhibit a Network of Tumor Suppressor Genes to Promote Pancreatic Tumor Growth and Progression

Adam E. Frampton; Leandro Castellano; Teresa Colombo; Elisa Giovannetti; Jonathan Krell; Jimmy Jacob; Loredana Pellegrino; Laura Roca-Alonso; Niccola Funel; Tamara Mh Gall; Alexander de Giorgio; Filipa G. Pinho; Valerio Fulci; David Britton; Raida Ahmad; Nagy Habib; R. Charles Coombes; Victoria Harding; Thomas Knösel; Justin Stebbing; Long R. Jiao

BACKGROUND & AIMS There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes. METHODS We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis. RESULTS We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection. CONCLUSIONS In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.


Nucleic Acids Research | 2013

miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts

Loredana Pellegrino; Justin Stebbing; Vania M. M. Braga; Adam E. Frampton; Jimmy Jacob; Lakjaya Buluwela; Long R. Jiao; Manikandan Periyasamy; Chris D. Madsen; M. Caley; Silvia Ottaviani; Laura Roca-Alonso; Mona El-Bahrawy; R. Charles Coombes; Jonathan Krell; Leandro Castellano

Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.


Annals of Oncology | 2013

The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms

Sara Caponi; Niccola Funel; Adam E. Frampton; F. Mosca; L. Santarpia; A. G. Van der Velde; Long R. Jiao; N. De Lio; Alfredo Falcone; G. Kazemier; G. A. Meijer; Henk M.W. Verheul; Enrico Vasile; Godefridus J. Peters; Ugo Boggi; Elisa Giovannetti

BACKGROUND This multicenter study evaluated three candidate microRNAs (miRNAs) (miR-21, miR-155 and miR-101) as potential biomarkers in intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. PATIENTS AND METHODS miRNA expression was quantified by quantitative RT-PCR in 86 laser-microdissected specimens, including 65 invasive IPMNs, 16 non-invasive IPMNs and 5 normal pancreatic ductal tissues. Univariate and multivariate analyses compared miRNAs and clinical parameters with overall (OS) and disease-free survival (DFS). RESULTS miR-21 and miR-155 were up-regulated in invasive IPMNs compared with non-invasive IPMNs, as well as in non-invasive IPMNs compared with normal tissues. Conversely, miR-101 levels were significantly higher in non-invasive IPMNs and normal tissues compared with invasive IPMNs. High levels of miR-21 were associated with worse OS [hazard ratio (HR) = 2.47, 95% confidence interval (CI) = 1.37-5.65, P = 0.0047]. Patients with high-miR-21 expression also had a shorter median DFS (10.9 versus 29.9 months, P = 0.01). Multivariate analysis confirmed miR-21 as independently prognostic for mortality and disease progression (death risk: HR = 3.3, 95% CI = 1.5-7.0, P = 0.02; progression risk: HR = 2.3, 95% CI = 1.2-4.8, P = 0.02), as well as positive lymph-node status (death risk: HR = 2.6, 95% CI = 1.1-6.3, P = 0.03; progression risk: HR = 2.2, 95% CI = 1.0-4.8, P = 0.04). CONCLUSIONS miR-21, miR-155 and miR-101 showed significant differences in invasive versus non-invasive IPMNs. miR-21 emerged as an independent prognostic biomarker in invasive IPMNs and should be validated in prospective studies.


European Journal of Cancer | 2015

microRNAs with prognostic significance in pancreatic ductal adenocarcinoma: A meta-analysis.

Adam E. Frampton; Jonathan Krell; Nigel B. Jamieson; Tamara Mh Gall; Elisa Giovannetti; Niccola Funel; Mireia Mato Prado; Daniel Krell; Nagy Habib; Leandro Castellano; Long R. Jiao; Justin Stebbing

BACKGROUND Reports have described the prognostic relevance of microRNAs (miRNAs) in patients treated for pancreatic ductal adenocarcinoma (PDAC). However, many of these include small numbers of patients. To increase statistical power and improve translation, we performed a systematic review and meta-analysis to determine a pooled conclusion. We examined the impact of miRNAs on overall survival (OS) and disease-free survival (DFS) in PDAC. METHODS Eligible studies were identified and quality assessed using multiple search strategies (last search December 2014). Data were collected from studies correlating clinical outcomes with dysregulated tumoural or blood miRNAs. Studies were pooled, and combined hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate strength of the associations. RESULTS Twenty studies involving 1525 patients treated for PDAC were included. After correcting for publication bias, OS was significantly shortened in patients with high tumoural miR-21 (adjusted HR = 2.48; 1.96-3.14). This result persisted when only studies adjusting for adjuvant chemotherapy were combined (adjusted HR = 2.72; 1.91-3.89). High miR-21 also predicted reduced DFS (adjusted HR = 3.08; 1.78-5.33). Similarly, we found significant adjusted HRs for poor OS for high miR-155, high miR-203, and low miR-34a; and unadjusted HRs for high miR-222 and high miR-10b. The small number of studies, limited number of miRNAs and paucity of multivariate analyses are the limitations of our study. CONCLUSIONS This is the first rigorous pooled analysis assessing miRNAs as prognostic biomarkers in PDAC. Tumoural miR-21 overexpression emerged as an important predictor of poor prognosis after PDAC resection independent of other clinicopathologic factors, including adjuvant chemotherapy use.


Cell Death and Disease | 2015

Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in β -adrenergic signaling and enhances apoptosis

Laura Roca-Alonso; Leandro Castellano; A Mills; Aleksandra Dabrowska; Markus B. Sikkel; Loredana Pellegrino; Jimmy Jacob; Adam E. Frampton; Jonathan Krell; R C Coombes; Sian E. Harding; Alexander R. Lyon; Justin Stebbing

The use of anthracyclines such as doxorubicin (DOX) has improved outcome in cancer patients, yet associated risks of cardiomyopathy have limited their clinical application. DOX-associated cardiotoxicity is frequently irreversible and typically progresses to heart failure (HF) but our understanding of molecular mechanisms underlying this and essential for development of cardioprotective strategies remains largely obscure. As microRNAs (miRNAs) have been shown to play potent regulatory roles in both cardiovascular disease and cancer, we investigated miRNA changes in DOX-induced HF and the alteration of cellular processes downstream. Myocardial miRNA profiling was performed after DOX-induced injury, either via acute application to isolated cardiomyocytes or via chronic exposure in vivo, and compared with miRNA profiles from remodeled hearts following myocardial infarction. The miR-30 family was downregulated in all three models. We describe here that miR-30 act regulating the β-adrenergic pathway, where preferential β1- and β2-adrenoceptor (β1AR and β2AR) direct inhibition is combined with Giα-2 targeting for fine-tuning. Importantly, we show that miR-30 also target the pro-apoptotic gene BNIP3L/NIX. In aggregate, we demonstrate that high miR-30 levels are protective against DOX toxicity and correlate this in turn with lower reactive oxygen species generation. In addition, we identify GATA-6 as a mediator of DOX-associated reductions in miR-30 expression. In conclusion, we describe that DOX causes acute and sustained miR-30 downregulation in cardiomyocytes via GATA-6. miR-30 overexpression protects cardiac cells from DOX-induced apoptosis, and its maintenance represents a potential cardioprotective and anti-tumorigenic strategy for anthracyclines.


Cancer Research | 2013

Downregulation of microRNA-515-5p by the Estrogen Receptor Modulates Sphingosine Kinase 1 and Breast Cancer Cell Proliferation

Filipa G. Pinho; Adam E. Frampton; Joao Nunes; Jonathan Krell; Heba Alshaker; Jimmy Jacob; Loredana Pellegrino; Laura Roca-Alonso; Alexander de Giorgio; Victoria Harding; Jonathan Waxman; Justin Stebbing; Dmitry Pchejetski; Leandro Castellano

Sphingosine kinase 1 (SK1) plays an important role in estrogen-dependent breast tumorigenesis, but its regulation is poorly understood. A subset of microRNAs (miRNA, miR) is regulated by estrogen and contributes to cellular proliferation and cancer progression. Here, we describe that miR-515-5p is transcriptionally repressed by estrogen receptor α (ERα) and functions as a tumor suppressor in breast cancer. Its downregulation enhances cell proliferation and estrogen-dependent SK1 activity, mediated by a reduction of miR-515-5p posttranscriptional repression. Enforced expression of miR-515-5p in breast cancer cells causes a reduction in SK1 activity, reduced cell proliferation, and the induction of caspase-dependent apoptosis. Conversely, opposing effects occur with miR-515-5p inhibition and by SK1 silencing. Notably, we show that estradiol (E2) treatment downregulates miR-515-5p levels, whereas the antiestrogen tamoxifen causes a decrease in SK1, which is rescued by silencing miR-515-5p. Analysis of chromatin immunoprecipitation sequencing (ChIP-Seq) data reveals that miR-515-5p suppression is mediated by a direct interaction of ERα within its promoter. RNA-sequencing (RNA-Seq) analysis of breast cancer cells after overexpressing miR-515-5p indicates that it partly modulates cell proliferation by regulating the Wnt pathway. The clinical implications of this novel regulatory system are shown as miR-515-5p is significantly downregulated in ER-positive (n = 146) compared with ER-negative (n = 98) breast cancers. Overall, we identify a new link between ERα, miR-515-5p, proliferation, and apoptosis in breast cancer tumorigenesis.


Future Oncology | 2013

IDH mutations in tumorigenesis and their potential role as novel therapeutic targets

Daniel Krell; Paul Mulholland; Adam E. Frampton; Jonathan Krell; Justin Stebbing; Chiara Bardella

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG). Somatic mutations in genes encoding IDH1 and IDH2 were first identified in glioma and subsequently in acute myeloid leukemia and other solid tumors. These heterozygous point mutations occur at the arginine residue of the enzymes active site and cause both loss of normal enzyme function and gain of function, causing reduction of α-KG to D-2-hydroxyglutarate, which accumulates. D-2-hydroxyglutarate may act as an oncometabolite through the inhibition of various α-KG-dependent enzymes, stimulating angiogenesis, histone modifications and aberrant DNA methylation. Possibly, IDH mutations may also cause oncogenic effects through dysregulation of the tricarboxylic acid cycle, or by increasing susceptibility to oxidative stress. Clinically, IDH mutations may be useful diagnostic, prognostic and predictive biomarkers, and it is anticipated that a better understanding of the pathogenesis of IDH mutations will enable IDH-directed therapies to be developed in the future.


Ejso | 2012

Radiofrequency assisted liver resection: analysis of 604 consecutive cases.

Madhava Pai; Adam E. Frampton; S. Mikhail; V. Resende; O. Kornasiewicz; Duncan Spalding; Long R. Jiao; Nagy Habib

BACKGROUND Intraoperative blood loss is an important factor contributing to morbidity and mortality in liver surgery. To address this we developed a bipolar radiofrequency (RF) device, the Habib 4X, used specifically for hepatic parenchymal transection. The aim of this study was to prospectively assess the peri-operative data using this technique. METHODS Between 2001 and 2010, 604 consecutive patients underwent liver resections with the RF assisted technique. Clinico-pathological and outcome data were collected and analysed. RESULTS There were 206 major and 398 minor hepatectomies. Median intraoperative blood loss was 155 (range 0-4300)ml, with a 12.6% rate of transfusion. There were 142 patients (23.5%) with postoperative complications; none had bleeding from the resection margin. Only one patient developed liver failure and the mortality rate was 1.8%. CONCLUSIONS RF assisted liver resection allows major and minor hepatectomies to be performed with minimal blood loss, low blood transfusion requirements, and reduced mortality and morbidity rates.


Journal of Clinical Pathology | 2013

Gene of the month: E-cadherin (CDH1).

Tamara Mh Gall; Adam E. Frampton

Epithelial-cadherin (E-cadherin; encoded by CDH1 ) is a member of the classical cadherins (the others being neural cadherin (N-cadherin) and vascular endothelial cadherin (VE-cadherin)). These single-pass transmembrane glycoproteins are expressed by a variety of tissues and are involved in Ca2+-dependent cell–cell adhesion. Initially described as liver cell adhesion molecule in chickens1 and uvomorulin in mice,2 the name E-cadherin was first used by Takeichi and colleagues in the early 1980s.3 ,4 Since then its role in normal epithelial cell architecture and tissue formation, as well as a tumour suppressor gene in cancer development and progression, has been extensively studied. Cell–cell adhesions are vital to maintain the integrity of cells and cohesion of tissues, and the control of these junctions therefore plays an important part in tumourigenesis. E-cadherin mediates cell–cell contact at the basolateral membrane in adherens junctions and its expression is the hallmark of epithelial cell layers.5 This short review focuses on the structure and function of E-cadherin at the cell junction, including the cadherin–catenin complex and its involvement in epithelial-to-mesenchymal transition (EMT). Finally, the role of E-cadherin in cancer and the therapeutic implications are discussed. The CDH1 gene is located on chromosome 16q22.1, spanning a region of approximately 100 kb.6 CDH1 comprises 16 exons and 15 introns and is highly conserved between species.6 The resulting E-cadherin protein is a 120 kDa glycoprotein consisting of an extracellular domain of five tandem repeated domains, a cytoplasmic domain and a single transmembrane domain.7 ,8 The extracellular domain has binding sites for Ca2+ ions and extends from the cell surface to bind to cadherins on adjacent cells by lateral dimerisation.9 This allows a cadherin–cadherin interface and thus cell–cell adhesion. The cytoplasmic domain consists of the juxtamembrane domain (JMD) and the catenin-binding domain (CBD), each …

Collaboration


Dive into the Adam E. Frampton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Long R. Jiao

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Giovannetti

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nagy Habib

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge