Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam F. Chrimes is active.

Publication


Featured researches published by Adam F. Chrimes.


ACS Nano | 2013

Electrochemical Control of Photoluminescence in Two-Dimensional MoS2 Nanoflakes

Yichao Wang; Jian Zhen Ou; Sivacarendran Balendhran; Adam F. Chrimes; Majid Mortazavi; David D. Yao; Matthew R. Field; Kay Latham; Vipul Bansal; James Friend; Serge Zhuiykov; Nikhil V. Medhekar; Michael S. Strano; Kourosh Kalantar-zadeh

Two-dimensional (2D) transition metal dichalcogenide semiconductors offer unique electronic and optical properties, which are significantly different from their bulk counterparts. It is known that the electronic structure of 2D MoS2, which is the most popular member of the family, depends on the number of layers. Its electronic structure alters dramatically at near atomically thin morphologies, producing strong photoluminescence (PL). Developing processes for controlling the 2D MoS2 PL is essential to efficiently harness many of its optical capabilities. So far, it has been shown that this PL can be electrically or mechanically gated. Here, we introduce an electrochemical approach to actively control the PL of liquid-phase-exfoliated 2D MoS2 nanoflakes by manipulating the amount of intercalated ions including Li(+), Na(+), and K(+) into and out of the 2D crystal structure. These ions are selected as they are crucial components in many bioprocesses. We show that this controlled intercalation allows for large PL modulations. The introduced electrochemically controlled PL will find significant applications in future chemical and bio-optical sensors as well as optical modulators/switches.


Nano Letters | 2014

Ion-Driven Photoluminescence Modulation of Quasi-Two-Dimensional MoS2 Nanoflakes for Applications in Biological Systems

Jian Zhen Ou; Adam F. Chrimes; Yichao Wang; Shi-Yang Tang; Michael S. Strano; Kourosh Kalantar-zadeh

Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.


ACS Nano | 2015

Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing

Jian Zhen Ou; Wanyin Ge; Benjamin J. Carey; Torben Daeneke; Asaf Rotbart; Wei Shan; Yichao Wang; Zhengqian Fu; Adam F. Chrimes; Wojtek Wlodarski; Salvy P. Russo; Yongxiang Li; Kourosh Kalantar-zadeh

Nitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming, and healthcare sectors. However, there are still significant challenges for NO2 sensing at low detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current gas-sensing technologies is significantly traded-off with their sensitivity and reversibility as well as fabrication and operating costs. In this work, we present an important progress for selective and reversible NO2 sensing by demonstrating an economical sensing platform based on the charge transfer between physisorbed NO2 gas molecules and two-dimensional (2D) tin disulfide (SnS2) flakes at low operating temperatures. The device shows high sensitivity and superior selectivity to NO2 at operating temperatures of less than 160 °C, which are well below those of chemisorptive and ion conductive NO2 sensors with much poorer selectivity. At the same time, excellent reversibility of the sensor is demonstrated, which has rarely been observed in other 2D material counterparts. Such impressive features originate from the planar morphology of 2D SnS2 as well as unique physical affinity and favorable electronic band positions of this material that facilitate the NO2 physisorption and charge transfer at parts per billion levels. The 2D SnS2-based sensor provides a real solution for low-cost and selective NO2 gas sensing.


Advanced Materials | 2015

Electronic Tuning of 2D MoS2 through Surface Functionalization

Emily P. Nguyen; Benjamin J. Carey; Jian Zhen Ou; Joel van Embden; Enrico Della Gaspera; Adam F. Chrimes; Michelle J. S. Spencer; Serge Zhuiykov; Kourosh Kalantar-zadeh; Torben Daeneke

The electronic properties of thiol-functionalized 2D MoS2 nanosheets are investigated. Shifts in the valence and conduction bands and Fermi levels are observed while bandgaps remain unaffected. These findings allow the tuning of energy barriers between 2D MoS2 and other materials, which can lead to improved control over 2D MoS2 -based electronic and optical devices and catalysts.


Nano Letters | 2015

Plasmon Resonances of Highly Doped Two-Dimensional MoS2

Yichao Wang; Jian Zhen Ou; Adam F. Chrimes; Benjamin J. Carey; Torben Daeneke; Manal M. Y. A. Alsaif; Majid Mortazavi; Serge Zhuiykov; Nikhil V. Medhekar; Madhu Bhaskaran; James Friend; Michael S. Strano; Kourosh Kalantar-zadeh

The exhibition of plasmon resonances in two-dimensional (2D) semiconductor compounds is desirable for many applications. Here, by electrochemically intercalating lithium into 2D molybdenum disulfide (MoS2) nanoflakes, plasmon resonances in the visible and near UV wavelength ranges are achieved. These plasmon resonances are controlled by the high doping level of the nanoflakes after the intercalation, producing two distinct resonance peak areas based on the crystal arrangements. The system is also benchmarked for biosensing using bovine serum albumin. This work provides a foundation for developing future 2D MoS2 based biological and optical units.


Analytical Chemistry | 2012

Active Control of Silver Nanoparticles Spacing Using Dielectrophoresis for Surface-Enhanced Raman Scattering

Adam F. Chrimes; Khashayar Khoshmanesh; Paul R. Stoddart; Aminuddin A. Kayani; Arnan Mitchell; Hemant Kumar Daima; Vipul Bansal; Kourosh Kalantar-zadeh

We demonstrate an active microfluidic platform that integrates dielectrophoresis for the control of silver nanoparticles spacing, as they flow in a liquid channel. By careful control of the nanoparticles spacing, we can effectively increase the surface-enhanced Raman scattering (SERS) signal intensity based on augmenting the number of SERS-active hot-spots, while avoiding irreversible aggregation of the particles. The system is benchmarked using dipicolinate (2,6-pyridinedicarboxylic acid) (DPA), which is a biomarker of Bacillus anthracis. The validity of the results is discussed using several complementing characterization scenarios.


ACS Applied Materials & Interfaces | 2016

Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes.

Manal M. Y. A. Alsaif; Matthew R. Field; Torben Daeneke; Adam F. Chrimes; Wei Zhang; Benjamin J. Carey; Kyle J. Berean; Sumeet Walia; Joel van Embden; Baoyue Zhang; Kay Latham; Kourosh Kalantar-zadeh; Jian Zhen Ou

Few-layer two-dimensional (2D) molybdenum oxide nanoflakes are exfoliated using a grinding assisted liquid phase sonication exfoliation method. The sonication process is carried out in five different mixtures of water with both aprotic and protic solvents. We found that surface energy and solubility of mixtures play important roles in changing the thickness, lateral dimension, and synthetic yield of the nanoflakes. We demonstrate an increase in proton intercalation in 2D nanoflakes upon simulated solar light exposure. This results in substoichiometric flakes and a subsequent enhancement in free electron concentrations, producing plasmon resonances. Two plasmon resonance peaks associated with the thickness and the lateral dimension axes are observable in the samples, in which the plasmonic peak positions could be tuned by the choice of the solvent in exfoliating 2D molybdenum oxide. The extinction coefficients of the plasmonic absorption bands of 2D molybdenum oxide nanoflakes in all samples are found to be high (ε > 10(9) L mol(-1) cm(-1)). It is expected that the tunable plasmon resonances of 2D molybdenum oxide nanoflakes presented in this work can be used in future electronic, optical, and sensing devices.


ACS Applied Materials & Interfaces | 2015

Liquid Metal/Metal Oxide Frameworks with Incorporated Ga2O3 for Photocatalysis

Wei Zhang; B. S. Naidu; Jian Zhen Ou; Anthony P. O’Mullane; Adam F. Chrimes; Benjamin J. Carey; Yichao Wang; Shi-Yang Tang; Vijay Sivan; Arnan Mitchell; Suresh K. Bhargava; Kourosh Kalantar-zadeh

Solvothermally synthesized Ga2O3 nanoparticles are incorporated into liquid metal/metal oxide (LM/MO) frameworks in order to form enhanced photocatalytic systems. The LM/MO frameworks, both with and without incorporated Ga2O3 nanoparticles, show photocatalytic activity due to a plasmonic effect where performance is related to the loading of Ga2O3 nanoparticles. Optimum photocatalytic efficiency is obtained with 1 wt % incorporation of Ga2O3 nanoparticles. This can be attributed to the sub-bandgap states of LM/MO frameworks, contributing to pseudo-ohmic contacts which reduce the free carrier injection barrier to Ga2O3.


Biosensors and Bioelectronics | 2013

In situ SERS probing of nano-silver coated individual yeast cells

Adam F. Chrimes; Khashayar Khoshmanesh; Shi-Yang Tang; Bayden R. Wood; Paul R. Stoddart; Sean S. E. Collins; Arnan Mitchell; Kourosh Kalantar-zadeh

For understanding cells functionalities and their communications, there is a need for highly sensitive cell analysis platforms capable of assessing non-specific chemicals on the surface and in the vicinity of cells. We report a microfluidic system integrating dielectrophoresis and surface enhanced Raman scattering (SERS) for the trapping and real time monitoring of cell functions in isolated and grouped cell clusters. Yeast cells are coated with silver nanoparticles to enable highly sensitive SERS analysis. The SERS responses of cells are examined under various conditions: live vs. dead and isolated vs. grouped. This work illustrates the feasibility of the system for in situ cell monitoring and analysis of secreted chemicals during their growth, metabolism, proliferation and apoptosis.


Nano Letters | 2016

Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS2

Amgad R. Rezk; Benjamin J. Carey; Adam F. Chrimes; Desmond W. M. Lau; Brant C. Gibson; Changxi Zheng; Michael S. Fuhrer; Leslie Y. Yeo; Kourosh Kalantar-zadeh

By exploiting the very recent discovery of the piezoelectricity in odd-numbered layers of two-dimensional molybdenum disulfide (MoS2), we show the possibility of reversibly tuning the photoluminescence of single and odd-numbered multilayered MoS2 using high frequency sound wave coupling. We observe a strong quenching in the photoluminescence associated with the dissociation and spatial separation of electrons-holes quasi-particles at low applied acoustic powers. At the same applied powers, we note a relative preference for ionization of trions into excitons. This work also constitutes the first visual presentation of the surface displacement in one-layered MoS2 using laser Doppler vibrometry. Such observations are associated with the acoustically generated electric field arising from the piezoelectric nature of MoS2 for odd-numbered layers. At larger applied powers, the thermal effect dominates the behavior of the two-dimensional flakes. Altogether, the work reveals several key fundamentals governing acousto-optic properties of odd-layered MoS2 that can be implemented in future optical and electronic systems.

Collaboration


Dive into the Adam F. Chrimes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge