Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Feiler is active.

Publication


Featured researches published by Adam Feiler.


Pure and Applied Chemistry | 2005

Atomic force microscopy and direct surface force measurements (IUPAC Technical Report)

John Ralston; Ian Larson; Mark W. Rutland; Adam Feiler; Mieke Kleijn

The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a sharp tip attached to a sensitive cantilever spring. Undulations in the surface lead to deflection of the spring, which is monitored optically. Usually, a feedback loop is employed, which holds the spring deflection constant, and the corresponding movement of the piezoelectric positioner thus generates the image. From this it can be seen that the scanning AFM has all the attributes necessary for the determination of surface and adhesion forces; a sensitive spring to determine the force, a piezoelectric crystal to alter the separation of the tip and surface, which if sufficiently well-calibrated also allows the relative separation of the tip and surface to be calculated. One can routinely quantify both the net surface force (and its separation dependence) as the probe approaches the sample, and any adhesion (pull-off) force on retraction. Interactions in relevant or practical systems may be studied, and, in such cases, a distinct advantage of the AFM technique is that a particle of interest can be attached to the end of the cantilever and the interaction with a sample of choice can be studied, a method often referred to as colloid probe microscopy. The AFM, or, more correctly, the scanning probe microscope, can thus be used to measure surface and frictional forces, the two foci of this article. There have been a wealth of force and friction measurements performed between an AFM tip and a surface, and many of the calibration and analysis issues are identical to those necessary for colloid probe work. We emphasize that this article confines itself primarily to elements of colloid probe measurement using the AFM.


Journal of Chemical Physics | 2005

Hydration forces between silica surfaces: Experimental data and predictions from different theories

J. J. Valle-Delgado; J.A. Molina-Bolívar; F. Galisteo-González; María José Gálvez-Ruiz; Adam Feiler; Mark W. Rutland

Silica is a very interesting system that has been thoroughly studied in the last decades. One of the most outstanding characteristics of silica suspensions is their stability in solutions at high salt concentrations. In addition to that, measurements of direct-interaction forces between silica surfaces, obtained by different authors by means of surface force apparatus or atomic force microscope (AFM), reveal the existence of a strong repulsive interaction at short distances (below 2 nm) that decays exponentially. These results cannot be explained in terms of the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, which only considers two types of forces: the electrical double-layer repulsion and the London-van der Waals attraction. Although there is a controversy about the origin of the short-range repulsive force, the existence of a structured layer of water molecules at the silica surface is the most accepted explanation for it. The overlap of structured water layers of different surfaces leads to repulsive forces, which are known as hydration forces. This assumption is based on the very hydrophilic nature of silica. Different theories have been developed in order to reproduce the exponentially decaying behavior (as a function of the separation distance) of the hydration forces. Different mechanisms for the formation of the structured water layer around the silica surfaces are considered by each theory. By the aid of an AFM and the colloid probe technique, the interaction forces between silica surfaces have been measured directly at different pH values and salt concentrations. The results confirm the presence of the short-range repulsion at any experimental condition (even at high salt concentration). A comparison between the experimental data and theoretical fits obtained from different theories has been performed in order to elucidate the nature of this non-DLVO repulsive force.


Review of Scientific Instruments | 2007

Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid

Torbjörn Pettersson; Niklas Nordgren; Mark W. Rutland; Adam Feiler

A number of atomic force microscopy cantilevers have been exhaustively calibrated by a number of techniques to obtain both normal and frictional force constants to evaluate the relative accuracy of the different methods. These were of either direct or indirect character-the latter relies on cantilever resonant frequencies. The so-called Sader [Rev. Sci. Instrum. 70, 3967 (1999)] and Cleveland [Rev. Sci. Instrum. 64, 403 (1993)] techniques are compared for the normal force constant calibration and while agreement was good, a systematic difference was observed. For the torsional force constants, all the techniques displayed a certain scatter but the agreement was highly encouraging. By far the simplest technique is that of Sader, and it is suggested in view of this validation that this method should be generally adopted. The issue of the photodetector calibration is also addressed since this is necessary to obtain the cantilever twist from which the torsional force is calculated. Here a technique of obtaining the torsional photodetector sensitivity by combining the direct and indirect methods is proposed. Direct calibration measurements were conducted in liquid as well as air, and a conversion factor was obtained showing that quantitative friction measurements in liquid are equally feasible provided the correct calibration is performed.


Langmuir | 2008

Superlubricity using repulsive van der Waals forces.

Adam Feiler; Lennart Bergström; Mark W. Rutland

Using colloid probe atomic force microscopy, we show that if repulsive van der Waals forces exist between two surfaces prior to their contact then friction is essentially precluded and supersliding is achieved. The friction measurements presented here are of the same order as the lowest ever recorded friction coefficients in liquid, though they are achieved by a completely different approach. A gold sphere attached to an AFM cantilever is forced to interact with a smooth Teflon surface (templated on mica). In cyclohexane, a repulsive van der Waals force is observed that diverges at short separations. The friction coefficient associated with this system is on the order of 0.0003. When the refractive index of the liquid is changed, the force can be tuned from repulsive to attractive and adhesive. The friction coefficient increases as the Hamaker constant becomes more positive and the divergent repulsive force, which prevents solid-solid contact, gets switched off.


Langmuir | 2010

Sequential adsorption of bovine mucin and lactoperoxidase to various substrates studied with quartz crystal microbalance with dissipation.

Tobias Halthur; Thomas Arnebrant; Lubica Macakova; Adam Feiler

Mucin and lactoperoxidase are both natively present in the human saliva. Mucin provides lubricating and antiadhesive function, while lactoperoxidase has antimicrobial activity. We propose that combined films of the two proteins can be used as a strategy for surface modification in biomedical applications such as implants or biosensors. In order to design and ultilize mixed protein films, it is necessary to understand the variation in adsorption behavior of the proteins onto different surfaces and how it affects their interaction. The quartz crystal microbalance with dissipation (QCM-D) technique has been used to extract information of the adsorption properties of bovine mucin (BSM) and lactoperoxidase (LPO) to gold, silica, and hydrophobized silica surfaces. The information has further been used to retrieve information of the viscoelastic properties of the adsorbed film. The adsorption and compaction of BSM were found to vary depending on the nature of the underlying bare surface, adsorbing as a thick highly hydrated film with loops and tails extending out in the bulk on gold and as a thinner film with much lower adsorbed amount on silica; and on hydrophobic surfaces, BSM adsorbs as a flat and much more compact layer. On gold and silica, the highly hydrated BSM film is cross-linked and compacted by the addition of LPO, whereas the compaction is not as pronounced on the already more compact film formed on hydrophobic surfaces. The adsorption of LPO to bare surfaces also varied depending on the type of surface. The adsorption profile of BSM onto LPO-coated surfaces mimicked the adsorption to the underlying surface, implying little interaction between the LPO and BSM. The interaction between the protein layers was interpreted as a combination of electrostatic and hydrophobic interactions, which was in turn influenced by the interaction of the proteins with the different substrates.


Journal of Biomedical Materials Research Part A | 2009

Potential use of mucins as biomaterial coatings. II. Mucin coatings affect the conformation and neutrophil‐activating properties of adsorbed host proteins—Toward a mucosal mimic

Tomas Sandberg; Marjam Karlsson Ott; Jan Carlsson; Adam Feiler; Karin D. Caldwell

In continuation of our recent fractionation and characterization study on mucins of bovine salivary (BSM), porcine gastric (PGM), and human salivary (MG1) origin, this study evaluates the effect of mucin precoating on the conformation and neutrophil-activating properties of host proteins adsorbed to a polyethylene terephthalate-based model biomaterial. Microscopy combined with assays for the neutrophil releases of reactive oxygen species and human neutrophil lipocalin showed that mucin precoating greatly reduced the strong immune-response normally induced by adsorbed immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA), respectively. A similar finding was made for the proinflammatory fibrinogen. Although the total uptakes of these proteins depended on the mucin surface concentration, a detailed composite analysis suggested the fraction of surface-exposed protein to be a stronger determinant of coating performance. The unexpectedly low neutrophil activation showed by composites containing near-monolayer concentrations of exposed IgG and sIgA, respectively, suggested that these act synergistically with mucin on the surface. In support of this hypothesis, quartz crystal microbalance with dissipation monitoring measurements revealed that a preadsorbed BSM layer stabilizes IgG through complexation on a polymeric model surface. Our findings link well to the complex in vivo situation and suggest that functional mucosal mimics can be created in situ for improved biomaterials performance.


Journal of Adhesion Science and Technology | 2005

Effect of relative humidity on adhesion and frictional properties of micro- and nano-scopic contacts

Adam Feiler; Paul Jenkins; Mark W. Rutland

The effect of relative humidity (RH) on the interactions of AFM tips and colloidal probes with hydrophilic silica substrates is investigated. Both friction and adhesion are studied. For the case of a colloidal probe the interaction is characteristic of a multiasperity contact, the adhesion increased with increasing RH and above a certain threshold relative humidity a large increase in adhesion was measured. This behaviour is explained in terms of a recent model where the Kelvin radius of the condensate becomes larger than some characteristic roughness on the surface. The interaction between the tip and the substrate also exhibited an increase in adhesion above a threshold RH although the increase was much less marked than with the colloid probe. The friction decreased with increasing humidity for both tip and colloid probe although the friction force was much less sensitive than adhesion to changes in RH. Stick-slip behaviour was observed between tip and substrate for all humidities at high loads, but only at the lowest RH (about 5%) it was observed at all loads. At higher humidity the behaviour became increasingly continuum on the experimental timescale, presumably due to viscous contributions from the water. Stick-slip was not observed for the colloidal probe friction measurements.


Physical Chemistry Chemical Physics | 2000

Metal oxide surfaces separated by aqueous solutions of linear polyphosphates: DLVO and non-DLVO interaction forces

Adam Feiler; Paul Jenkins; John Ralston

An atomic force microscope has been used to study the interaction between silica and titanium dioxide surfaces, in the form of both colloidal particles and flat surfaces, as a function of pH and in the presence of linear polyphosphates. In the absence of polyphosphate, the interaction force between silica and titanium dioxide in both symmetric (silica sphere–silica flat, titanium dioxide sphere–titanium dioxide flat) and asymmetric cases (silica sphere–titanium dioxide flat) was well described by DLVO theory. Independent streaming potential measurements of the titanium dioxide flat surfaces under the same conditions showed excellent agreement with the diffuse layer potentials derived from the force data. In the presence of polyphosphate the interaction force between silica and titanium dioxide was dominated at long range by electrostatic double layer forces and at short range by non-DLVO steric interactions. Both the repulsive electrostatic double layer interaction and the extent of the steric force increased with increasing polyphosphate concentration and n, where n is the number of phosphorus atoms in the molecule. Measurements of the steric layer thickness taken directly from the force data compared extremely well with predictions based on molecular modelling.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant Mycobacterium tuberculosis infections

Sabrina Valetti; Xin Xia; Joana Costa-Gouveia; Priscille Brodin; Marie-Françoise Bernet-Camard; Margareta Andersson; Adam Feiler

AIM First extensive reformulation of clofazimine (CLZ) in nanoporous silica particles (NSPs) for tackling antibiotic-resistant tuberculosis (TB) infections. MATERIALS & METHODS Solid-state characterization of several CLZ-encapsulated NSP formulations was followed by in vitro drug solubility, Caco-2 intestinal cells drug permeability and TB antibacterial activity. RESULTS NSPs stabilize the amorphous state of CLZ (shelf stability >6 months) and dramatically increase the drug solubility in simulated gastric fluid (up to 20-fold) with different dissolution kinetics depending on the NSPs used. CLZ encapsulation in NSP substantially enhances the permeation through model intestinal cell layer, achieving effective antimicrobial concentrations in TB-infected macrophages. CONCLUSION Promising results toward refurbishment of an approved marketed drug for a different indication suitable for oral anti-TB formulation.


Journal of Physics: Condensed Matter | 2004

Measurement of interactions between protein layers adsorbed on silica by atomic force microscopy

J. J. Valle-Delgado; J.A. Molina-Bolívar; F. Galisteo-González; María José Gálvez-Ruiz; Adam Feiler; Mark W. Rutland

The present work, using an atomic force microscope and the colloid probe technique, investigates the interaction forces between bovine serum albumin (BSA) layers and between apoferritin layers adsorbed on silica surfaces. The measurements have been carried out in an aqueous medium at different pH values and NaCl concentrations. Similar behaviours have been found with both proteins. Electrostatic and steric forces dominate the interactions between the protein layers at low NaCl concentrations. However, a very strange behaviour is found as a function of pH at high NaCl concentrations. The results obtained under these conditions could be explained if the presence of hydration forces in these systems is assumed.

Collaboration


Dive into the Adam Feiler's collaboration.

Top Co-Authors

Avatar

Mark W. Rutland

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Jenkins

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

John Ralston

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge