Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Frost is active.

Publication


Featured researches published by Adam Frost.


Nature | 2006

GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission

Aurélien Roux; Katherine Uyhazi; Adam Frost; Pietro De Camilli

Dynamin, a crucial factor in endocytosis, is a member of a family of GTPases that participates in membrane fission. It was initially proposed to act as a machine that constricts and cuts the neck of nascent vesicles in a GTP-hydrolysis-dependent reaction, but subsequent studies suggested alternative models. Here we monitored the effect of nucleotides on dynamin-coated lipid tubules in real time. Addition of GTP, but not of GDP or GTP-γS, resulted in twisting of the tubules and supercoiling, suggesting a rotatory movement of the helix turns relative to each other during GTP hydrolysis. Rotation was confirmed by the movement of beads attached to the tubules. Twisting activity produced a longitudinal tension that was released by tubule breakage when both ends of the tubule were anchored. Fission also occurred when dynamin and GTP were added to lipid tubules that had been generated from liposomes by the motor activity of kinesin on microtubules. No fission events were observed in the absence of longitudinal tension. These findings demonstrate a mechanoenzyme activity of dynamin in endocytosis, but also imply that constriction is not sufficient for fission. At the short necks of endocytic vesicles, other factors leading to tension may cooperate with the constricting activity of dynamin to induce fission.


Cell | 2008

Structural Basis of Membrane Invagination by F-BAR Domains

Adam Frost; Rushika M. Perera; Aurélien Roux; Krasimir A. Spasov; Olivier Destaing; Edward H. Egelman; Pietro De Camilli; Vinzenz M. Unger

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the modules concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domains lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Cell | 2009

The BAR Domain Superfamily: Membrane-Molding Macromolecules

Adam Frost; Vinzenz M. Unger; Pietro De Camilli

Membrane-shaping proteins of the BAR domain superfamily are determinants of organelle biogenesis, membrane trafficking, cell division, and cell migration. An upsurge of research now reveals new principles of BAR domain-mediated membrane remodeling, enhancing our understanding of membrane curvature-mediated information processing.


Cell | 2012

A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress

Onn Brandman; Jacob Stewart-Ornstein; Daisy Wong; Adam G. Larson; Christopher C. Williams; Gene-Wei Li; Sharleen Zhou; David S. King; Peter S. Shen; Jimena Weibezahn; Joshua G. Dunn; Silvi Rouskin; Toshifumi Inada; Adam Frost; Jonathan S. Weissman

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Cell | 2009

The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis

Sabrice Guerrier; Jaeda Coutinho-Budd; Takayuki Sassa; Aurelie Gresset; Nicole Vincent Jordan; Keng Chen; Weilin Jin; Adam Frost; Franck Polleux

During brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in nonneuronal cells filopodia dynamics decrease the rate of cell migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces leading process branching and increases the rate of neuronal migration in vivo. Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading process branching and decreasing migration. These results suggest that F-BAR domains are functionally diverse and highlight the functional importance of proteins directly regulating membrane deformation for proper neuronal migration and morphogenesis.


Molecular Cell | 2002

The Docking Protein FRS2α Controls a MAP Kinase-Mediated Negative Feedback Mechanism for Signaling by FGF Receptors

Irit Lax; Andrew S. Wong; Betty Lamothe; Arnold Lee; Adam Frost; Jessica J. Hawes; Joseph Schlessinger

The docking protein FRS2alpha functions as a major mediator of signaling by FGF and NGF receptors. Here we demonstrate that, in addition to tyrosine phosphorylation, FRS2alpha is phosphorylated by MAP kinase on multiple threonine residues in response to FGF stimulation or by insulin, EGF, and PDGF, extracellular stimuli that do not induce tyrosine phosphorylation of FRS2alpha. Prevention of FRS2alpha threonine phosphorylation results in constitutive tyrosine phosphorylation of FRS2alpha in unstimulated cells and enhanced tyrosine phosphorylation of FRS2alpha, MAPK stimulation, cell migration, and proliferation in FGF-stimulated cells. Expression of an FRS2alpha mutant deficient in MAPK phosphorylation sites induces anchorage-independent cell growth and colony formation in soft agar. These experiments reveal a novel MAPK-mediated, negative feedback mechanism for control of signaling pathways that are dependent on FRS2 and a mechanism for heterologous control of signaling via FGF receptors.


Journal of Neurochemistry | 2001

Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens

Mark E. Jackson; Adam Frost; Bita Moghaddam

The prefrontal cortex (PFC) is thought to provide an excitatory influence on the output of mesoaccumbens dopamine neurons. The evidence for this influence primarily arises from findings in the rat that chemical or high‐intensity and high‐frequency (60–200 Hz) electrical stimulations of PFC increase burst activity of midbrain dopamine neurons, and augment terminal release of dopamine in the nucleus accumbens. However, PFC neurons in animals that are engaged in PFC‐dependent cognitive tasks increase their firing frequency from a baseline of 1–3 Hz to 7–10 Hz, suggesting that the commonly used high‐frequency stimulation parameters of the PFC may not be relevant to the behavioral states that are associated with PFC activation. We investigated the influence of PFC activation at lower physiologically relevant frequencies on the release of dopamine in the nucleus accumbens. Using rapid (5‐min) microdialysis measures of extracellular dopamine in the nucleus accumbens, we found that although PFC stimulation at 60 Hz produces the expected increases in accumbal dopamine release, the same amplitude of PFC stimulation at 10 Hz significantly decreased these levels. These results indicate that activation of PFC, at frequencies that are associated with increased cognitive demand on this region, inhibits the mesoaccumbens dopamine system.


The EMBO Journal | 2016

Membrane fission by dynamin: what we know and what we need to know.

Bruno Antonny; Christopher G. Burd; Pietro De Camilli; Elizabeth H. Chen; Oliver Daumke; Katja Faelber; Marijn G. J. Ford; Vadim A. Frolov; Adam Frost; Jenny E. Hinshaw; Tom Kirchhausen; Michael M. Kozlov; Martin Lenz; Harry H. Low; Harvey T. McMahon; Christien J. Merrifield; Thomas D. Pollard; Philip Robinson; Aurélien Roux; Sandra L. Schmid

The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission

Sajjan Koirala; Qian Guo; Raghav Kalia; Huyen T. Bui; Debra M. Eckert; Adam Frost; Janet M. Shaw

Significance Mitochondrial fission is critical for mammalian cell division, mitophagy, and development. Fission initiates via recruitment of dynamin-related GTPases to the mitochondrial surface. In yeast and human, the recruitment utilizes adaptors that differ in sequence and predicted structure. Key unresolved issues are whether these adaptors function independently in membrane recruitment and whether a single adaptor and GTPase are sufficient to catalyze scission. We show that three human adaptors work interchangeably with a single mitochondrial dynamin to accomplish fission. We also show that an adaptor alters the architecture of the dynamin polymer in a manner that could facilitate membrane constriction and severing. Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.


Science | 2015

Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains

Peter S. Shen; Joseph Park; Yidan Qin; Xueming Li; Krishna Parsawar; Matthew H. Larson; James Cox; Yifan Cheng; Alan M. Lambowitz; Jonathan S. Weissman; Onn Brandman; Adam Frost

Tagging truncated proteins with CAT tails During the translation of a messenger RNA (mRNA) into protein, ribosomes can sometimes stall. Truncated proteins thus formed can be toxic to the cell and must be destroyed. Shen et al. show that the proteins Ltn1p and Rqc2p, subunits of the ribosome quality control complex, bind to the stalled and partially disassembled ribosome. Ltn1p, a ubiquitin ligase, binds near the nascent polypeptide exit tunnel on the ribosome, well placed to tag the truncated protein for destruction. The Rqc2p protein interacts with the transfer RNA binding sites on the partial ribosome and recruits alanine- and threonine-bearing tRNAs. Rqc2p then catalyzes the addition of these amino acids onto the unfinished protein, in the absence of both the fully assembled ribosome and mRNA. These so-called CAT tails may promote the heat shock response, which helps buffer against malformed proteins. Science, this issue p. 75 Stalled protein translation results in 80S ribosome– and messenger RNA–free amino acid addition to truncated proteins. In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo–electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein—not an mRNA—determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions (“CAT tails”).

Collaboration


Dive into the Adam Frost's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raghav Kalia

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge