Adam G. Sowalsky
Beth Israel Deaconess Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam G. Sowalsky.
Clinical Cancer Research | 2014
Ziyang Yu; Sen Chen; Adam G. Sowalsky; Olga Voznesensky; Elahe A. Mostaghel; Peter S. Nelson; Changmeng Cai; Steven P. Balk
Purpose: Mechanisms mediating androgen receptor (AR) reactivation in prostate cancer that progresses after castration (castration-resistant prostate cancer; CRPC) and subsequent treatment with abiraterone (CYP17A1 inhibitor that further suppresses androgen synthesis) remain unclear. Experimental Design: Prostate cancer xenografts were examined to identify mechanism of progression after castration and abiraterone. Results: AR reactivation in abiraterone-resistant VCaP xenografts was not associated with restoration of intratumoral androgens or alterations in AR coregulators. In contrast, mRNA encoding full-length AR (AR-FL) and a constitutively active splice variant (AR-V7) were increased compared with xenografts before castration, with an increase in AR-V7 relative to AR-FL. This shift toward AR-V7 was due to a feedback mechanism whereby the androgen-liganded AR stimulates expression of proteins that suppress generation of AR-V7 relative to AR-FL transcripts. However, despite the increases in AR-V7 mRNA, it remained a minor transcript (<1%) relative to AR-FL in resistant VCaP xenografts and CRPC clinical samples. AR-V7 protein expression was similarly low relative to AR-FL in castration-resistant VCaP xenografts and androgen-deprived VCaP cells, but the weak basal AR activity in these latter cells was further repressed by AR-V7 siRNA. Conclusions: AR-V7 at these low levels is not adequate to restore AR activity, but its rapid induction after androgen deprivation allows tumors to retain basal AR activity that may be needed for survival until more potent mechanisms emerge to activate AR. Agents targeting AR splice variants may be most effective when used very early in conjunction with therapies targeting the AR ligand-binding domain. Clin Cancer Res; 20(6); 1590–600. ©2014 AACR.
Journal of Clinical Investigation | 2013
Changmeng Cai; Hongyun Wang; Housheng Hansen He; Sen Chen; Lingfeng He; Fen Ma; Lorelei A. Mucci; Qianben Wang; Christopher Fiore; Adam G. Sowalsky; Massimo Loda; X. Shirley Liu; Myles Brown; Steven P. Balk; Xin Yuan
Fusion of the androgen receptor-regulated (AR-regulated) TMPRSS2 gene with ERG in prostate cancer (PCa) causes androgen-stimulated overexpression of ERG, an ETS transcription factor, but critical downstream effectors of ERG-mediating PCa development remain to be established. Expression of the SOX9 transcription factor correlated with TMPRSS2:ERG fusion in 3 independent PCa cohorts, and ERG-dependent expression of SOX9 was confirmed by RNAi in the fusion-positive VCaP cell line. SOX9 has been shown to mediate ductal morphogenesis in fetal prostate and maintain stem/progenitor cell pools in multiple adult tissues, and has also been linked to PCa and other cancers. SOX9 overexpression resulted in neoplasia in murine prostate and stimulated tumor invasion, similarly to ERG. Moreover, SOX9 depletion in VCaP cells markedly impaired invasion and growth in vitro and in vivo, establishing SOX9 as a critical downstream effector of ERG. Finally, we found that ERG regulated SOX9 indirectly by opening a cryptic AR-regulated enhancer in the SOX9 gene. Together, these results demonstrate that ERG redirects AR to a set of genes including SOX9 that are not normally androgen stimulated, and identify SOX9 as a critical downstream effector of ERG in TMPRSS2:ERG fusion-positive PCa.
Clinical Cancer Research | 2015
Eddy J. Chen; Adam G. Sowalsky; Shuai Gao; Changmeng Cai; Olga Voznesensky; Rachel J. Schaefer; Massimo Loda; Lawrence D. True; Huihui Ye; Patricia Troncoso; Rosina L. Lis; Philip W. Kantoff; Robert B. Montgomery; Peter S. Nelson; Glenn J. Bubley; Steven P. Balk; Mary-Ellen Taplin
Purpose: The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. Experimental Design: AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. Results: The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. Conclusions: These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. Clin Cancer Res; 21(6); 1273–80. ©2014 AACR. See related commentary by Sharifi, p. 1240
Cancer Research | 2013
Adam G. Sowalsky; Huihui Ye; Glenn J. Bubley; Steven P. Balk
Low-grade prostate cancers (Gleason pattern 3, G3) detected on needle biopsies are generally viewed as indolent and suitable for conservative management with only interval repeat biopsies to monitor by watchful waiting. Higher grade tumors eventually emerge in 20% to 30% of these cases, but this process may only reflect incomplete sampling on the initial biopsy, such that it remains unknown whether G3 tumors generally progress to higher grades. In this study, we examined a series of adjacent G3 and Gleason pattern 4 (G4) tumors in radical prostatectomy specimens and found that all were concordant for the TMPRSS2:ERG gene fusion. Using hybrid-capture and deep sequencing in four fusion-positive cases, we found that adjacent laser-capture microdissected G3 and G4 tumors had identical TMPRSS2:ERG fusion breakpoints, confirming their clonal origin. Two of these G3 tumors had deletion of a single PTEN gene that was also deleted in the adjacent G4, while the G4 tumors in two cases had additional PTEN losses. These findings establish that a subset of G3 tumors progress to G4 or emerge from a common precursor. Further, they show that G3 tumors that progress to G4 may have molecular features distinguishing them from G3 tumors that do not progress. Thus, determining the spectrum of these genetic or epigenetic features may allow for the identification of G3 tumors on needle biopsies that are truly indolent versus those that have the potential to progress or that may already be associated with a G4 tumor that was not sampled at the initial biopsy, therefore, requiring more aggressive surveillance or intervention.
Molecular Cancer Research | 2015
Adam G. Sowalsky; Zheng Xia; Liguo Wang; Hao Zhao; Shaoyong Chen; Glenn J. Bubley; Steven P. Balk; Wei Li
Men with metastatic prostate cancer who are treated with androgen deprivation therapies (ADT) usually relapse within 2 to 3 years with disease that is termed castration-resistant prostate cancer (CRPC). To identify the mechanism that drives these advanced tumors, paired-end RNA-sequencing (RNA-seq) was performed on a panel of CRPC bone marrow biopsy specimens. From this genome-wide approach, mutations were found in a series of genes with prostate cancer relevance, including AR, NCOR1, KDM3A, KDM4A, CHD1, SETD5, SETD7, INPP4B, RASGRP3, RASA1, TP53BP1, and CDH1, and a novel SND1:BRAF gene fusion. Among the most highly expressed transcripts were 10 noncoding RNAs (ncRNAs), including MALAT1 and PABPC1, which are involved in RNA processing. Notably, a high percentage of sequence reads mapped to introns, which were determined to be the result of incomplete splicing at canonical splice junctions. Using quantitative PCR (qPCR), a series of genes (AR, KLK2, KLK3, STEAP2, CPSF6, and CDK19) were confirmed to have a greater proportion of unspliced RNA in CRPC specimens than in normal prostate epithelium, untreated primary prostate cancer, and cultured prostate cancer cells. This inefficient coupling of transcription and mRNA splicing suggests an overall increase in transcription or defect in splicing. Implications: Inefficient splicing in advanced prostate cancer provides a selective advantage through effects on microRNA networks but may render tumors vulnerable to agents that suppress rate-limiting steps in splicing. Mol Cancer Res; 13(1); 98–106. ©2014 AACR.
Journal of Clinical Investigation | 2016
Fen Ma; Huihui Ye; Housheng Hansen He; Sean J. Gerrin; Sen Chen; Benjamin A. Tanenbaum; Changmeng Cai; Adam G. Sowalsky; Lingfeng He; Hongyun Wang; Steven P. Balk; Xin Yuan
The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β-catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy.
Oncogene | 2010
Adam G. Sowalsky; Addy Alt-Holland; Yulia Shamis; Jonathan A. Garlick; Larry A. Feig
Ras proteins activate Raf and PI-3 kinases, as well as exchange factors for RalA and RalB GTPases. Many previous studies have reported that the Ral-signaling cascade contributes positively to Ras-mediated oncogenesis. Here, using a bioengineered tissue model of early steps in Ras-induced human squamous cell carcinoma of the skin, we found the opposite. Conversion of Ras-expressing keratinocytes from a premalignant to malignant state induced by decreasing E-cadherin function was associated with and required an approximately two to threefold decrease in RalA expression. Moreover, direct knockdown of RalA to a similar degree by shRNA expression in these cells reduced E-cadherin levels and also induced progression to a malignant phenotype. Knockdown of the Ral effector, Exo84, mimicked the effects of decreasing RalA levels in these engineered tissues. These phenomena can be explained by our finding that the stability of E-cadherin in Ras-expressing keratinocytes depends upon this RalA signaling cascade. These results imply that an important component of the early stages in squamous carcinoma progression may be a modest decrease in RalA gene expression that magnifies the effects of decreased E-cadherin expression by promoting its degradation.
Clinical Cancer Research | 2016
Shuai Gao; Huihui Ye; Sean J. Gerrin; Hongyun Wang; Ankur Sharma; Sen Chen; Akash Patnaik; Adam G. Sowalsky; Olga Voznesensky; Wanting Han; Ziyang Yu; Elahe A. Mostaghel; Peter S. Nelson; Mary-Ellen Taplin; Steven P. Balk; Changmeng Cai
Purpose: ErbB2 signaling appears to be increased and may enhance androgen receptor (AR) activity in a subset of patients with castration-resistant prostate cancer (CRPC), but agents targeting ErbB2 have not been effective. This study was undertaken to assess ErbB2 activity in abiraterone-resistant prostate cancer and to determine whether it may contribute to AR signaling in these tumors. Experimental Design: AR activity and ErbB2 signaling were examined in the radical prostatectomy specimens from a neoadjuvant clinical trial of leuprolide plus abiraterone and in the specimens from abiraterone-resistant CRPC xenograft models. The effect of ErbB2 signaling on AR activity was determined in two CRPC cell lines. Moreover, the effect of combination treatment with abiraterone and an ErbB2 inhibitor was assessed in a CRPC xenograft model. Results: We found that ErbB2 signaling was elevated in residual tumor following abiraterone treatment in a subset of patients and was associated with higher nuclear AR expression. In xenograft models, we similarly demonstrated that ErbB2 signaling was increased and associated with AR reactivation in abiraterone-resistant tumors. Mechanistically, we show that ErbB2 signaling and subsequent activation of the PI3K/AKT signaling stabilizes AR protein. Furthermore, concomitantly treating CRPC cells with abiraterone and an ErbB2 inhibitor, lapatinib, blocked AR reactivation and suppressed tumor progression. Conclusions: ErbB2 signaling is elevated in a subset of patients with abiraterone-resistant prostate cancer and stabilizes AR protein. Combination therapy with abiraterone and ErbB2 antagonists may be effective for treating the subset of CRPC with elevated ErbB2 activity. Clin Cancer Res; 22(14); 3672–82. ©2016 AACR.
Oncotarget | 2015
Sushil Kumar; Bin Lu; Updesh Dixit; Sajjad Hossain; Yongzhang Liu; Jing Li; Peter Hornbeck; Weiming Zheng; Adam G. Sowalsky; Leszek Kotula; Raymond B. Birge
Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM.
Cancer Research | 2011
Adam G. Sowalsky; Addy Alt-Holland; Yulia Shamis; Jonathan A. Garlick; Larry A. Feig
A large body of evidence has shown that stromal cells play a significant role in determining the fate of neighboring tumor cells through the secretion of various cytokines. How cytokine secretion by stromal cells is regulated in this context is poorly understood. In this study, we used a bioengineered human tissue model of skin squamous cell carcinoma progression to reveal that RalA function in dermal fibroblasts is required for tumor progression of neighboring neoplastic keratinocytes. This conclusion is based on the observations that suppression of RalA expression in dermal fibroblasts blocked tumorigenic keratinocytes from invading into the dermal compartment of engineered tissues and suppressed more advanced tumor progression after these tissues were transplanted onto the dorsum of mice. RalA executes this tumor-promoting function of dermal fibroblasts, at least in part, by mediating hepatocyte growth factor (HGF) secretion through its effector proteins, the Sec5 and Exo84 subunits of the exocyst complex. These findings reveal a new level of HGF regulation and highlight the RalA signaling cascade in dermal fibroblasts as a potential anticancer target.