Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Gastonguay is active.

Publication


Featured researches published by Adam Gastonguay.


Cancer Biology & Therapy | 2012

The role of Rac1 in the regulation of NF-κB activity, cell proliferation, and cell migration in non-small cell lung carcinoma.

Adam Gastonguay; Tracy J. Berg; Andrew D. Hauser; Nathan Schuld; Ellen L. Lorimer

The small GTPase Rac1 regulates many cellular processes, including cytoskeletal reorganization, cell migration, proliferation, and survival. Additionally, Rac1 plays a major role in activating NF-κB-mediated transcription. Both Rac1 and NF-κB regulate many properties of the malignant phenotype, including anchorage-independent proliferation and survival, metastasis, and angiogenesis. Despite these findings, the roles of Rac1and NF-κB in non-small cell lung carcinoma, a leading cause of cancer deaths, have not been thoroughly investigated. Here, we compared the effects of Rac1 siRNA to that of the Rac1 inhibitor NSC23766 on multiple features of the NSCLC malignant phenotype, including NF-κB activity. We show that the siRNA-mediated silencing of Rac1 in lung cancer cells results in decreased cell proliferation and migration. The decrease in proliferation was observed in both anchorage-dependent and anchorage-independent assays. Furthermore, cells with decreased Rac1 expression have a slowed progression through the G1 phase of the cell cycle. These effects induced by Rac1 siRNA correlated with a decrease in NF-κB transcriptional activity. Additionally, inhibition of NF-κB signaling with BAY 11–7082 inhibited proliferation; indicating that the loss of cell proliferation and migration induced by the silencing of Rac1 expression may be attributed in part to loss of NF-κB activity. Interestingly, treatment with the Rac1 inhibitor NSC23766 strongly inhibits cell proliferation, cell cycle progression, and NF-κB activity in lung cancer cells, to an even greater extent than the inhibition induced by Rac1 siRNA. These findings indicate that Rac1 plays an important role in lung cancer cell proliferation and migration, most likely through its ability to promote NF-κB activity, and highlight Rac1 pathways as therapeutic targets for the treatment of lung cancer.


Journal of Biological Chemistry | 2010

Splice Variants of SmgGDS Control Small GTPase Prenylation and Membrane Localization

Tracy J. Berg; Adam Gastonguay; Ellen L. Lorimer; John R. Kuhnmuench; Rongshan Li; Alan P. Fields

Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.


Pediatrics | 2015

SIGIRR Genetic Variants in Premature Infants With Necrotizing Enterocolitis

Venkatesh Sampath; Heather Menden; Daniel Helbling; Keguo Li; Adam Gastonguay; Ramani Ramchandran; David Dimmock

Necrotizing enterocolitis (NEC) is a severe form of bowel disease that develops in premature infants. Although animal data and human studies suggest that aberrant activation of the intestinal immune system contributes to NEC, the pathogenesis remains unclear. We hypothesized that inherited defects in the regulation of Toll-like receptor signaling can contribute to NEC susceptibility in premature infants. A forward genetic screen done in an infant with lethal NEC using exome sequencing identified a novel stop mutation (p.Y168X) and a rare missense variant (p.S80Y) in SIGIRR, a gene that inhibits intestinal Toll-like receptor signaling. Functional studies carried out in human embryonic kidney cells and intestinal epithelial cells demonstrated that SIGIRR inhibited inflammation induced by lipopolysaccharide, a cell wall component of Gram-negative bacteria implicated in NEC. The genetic variants identified in the infant with NEC resulted in loss of SIGIRR function and exaggerated inflammation in response to lipopolysaccharide. Additionally, Sanger sequencing identified missense, stop, or splice region SIGIRR variants in 10 of 17 premature infants with stage II+ NEC. To the best of our knowledge, this is one of the first reports of a phenotype associated with SIGIRR in humans. Our data provide novel mechanistic insight into the probable causation of NEC and support additional investigation of the hypothesis that inherited defects in the regulation of innate immune signaling can contribute to NEC susceptibility in premature infants.


PLOS ONE | 2013

Mmp17b Is Essential for Proper Neural Crest Cell Migration In Vivo

Noah R. Leigh; Marcus-Oliver Schupp; Keguo Li; Vakeel Padmanabhan; Adam Gastonguay; Ling Wang; Chang Z. Chun; George A. Wilkinson; Ramani Ramchandran

The extracellular matrix plays a critical role in neural crest (NC) cell migration. In this study, we characterize the contribution of the novel GPI-linked matrix metalloproteinase (MMP) zebrafish mmp17b. Mmp17b is expressed post-gastrulation in the developing NC. Morpholino inactivation of mmp17b function, or chemical inhibition of MMP activity results in aberrant NC cell migration with minimal change in NC proliferation or apoptosis. Intriguingly, a GPI anchored protein with metalloproteinase inhibitor properties, Reversion-inducing-Cysteine-rich protein with Kazal motifs (RECK), which has previously been implicated in NC development, is expressed in close apposition to NC cells expressing mmp17b, raising the possibility that these two gene products interact. Consistent with this possibility, embryos silenced for mmp17b show defective development of the dorsal root ganglia (DRG), a crest-derived structure affected in RECK mutant fish sensory deprived (sdp). Taken together, this study has identified the first pair of MMP, and their putative MMP inhibitor RECK that functions together in NC cell migration.


Biology Open | 2015

Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism.

Stephanie M. Cossette; Adam Gastonguay; Xiaoping Bao; Alexandra Lerch-Gaggl; Ling Zhong; Leanne Harmann; Christopher Koceja; Robert Q. Miao; Padmanabhan Vakeel; Changzoon Chun; Keguo Li; Jamie Foeckler; Michelle Bordas; Hartmut Weiler; Jennifer L. Strande; Sean P. Palecek; Ramani Ramchandran

ABSTRACT In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development.


Cell Cycle | 2014

SmgGDS-558 regulates the cell cycle in pancreatic, non-small cell lung, and breast cancers

Nathan Schuld; Andrew D. Hauser; Adam Gastonguay; Jessica M. Wilson; Ellen L. Lorimer

Oncogenic mutation or misregulation of small GTPases in the Ras and Rho families can promote unregulated cell cycle progression in cancer. Post-translational modification by prenylation of these GTPases allows them to signal at the cell membrane. Splice variants of SmgGDS, named SmgGDS-607 and SmgGDS-558, promote the prenylation and membrane trafficking of multiple Ras and Rho family members, which makes SmgGDS a potentially important regulator of the cell cycle. Surprisingly little is known about how SmgGDS-607 and SmgGDS-558 affect cell cycle-regulatory proteins in cancer, even though SmgGDS is overexpressed in multiple types of cancer. To examine the roles of SmgGDS splice variants in the cell cycle, we compared the effects of the RNAi-mediated depletion of SmgGDS-558 vs. SmgGDS-607 on cell cycle progression and the expression of cyclin D1, p27, and p21 in pancreatic, lung, and breast cancer cell lines. We show for the first time that SmgGDS promotes proliferation of pancreatic cancer cells, and we demonstrate that SmgGDS-558 plays a greater role than SmgGDS-607 in cell cycle progression as well as promoting cyclin D1 and suppressing p27 expression in multiple types of cancer. Silencing both splice variants of SmgGDS in the cancer cell lines produces an alternative signaling profile compared with silencing SmgGDS-558 alone. We also show that loss of both SmgGDS-607 and SmgGDS-558 simultaneously decreases tumorigenesis of NCI-H1703 non-small cell lung carcinoma (NSCLC) xenografts in mice. These findings indicate that SmgGDS promotes cell cycle progression in multiple types of cancer, making SmgGDS a valuable target for cancer therapeutics.


Free Radical Biology and Medicine | 2011

Characterization of the threshold for NAD(P)H:quinone oxidoreductase activity in intact sulforaphane-treated pulmonary arterial endothelial cells.

Robert D. Bongard; Gary S. Krenz; Adam Gastonguay; Brian Lindemer; Marilyn P. Merker

Treatment of bovine pulmonary arterial endothelial cells in culture with the phase II enzyme inducer sulforaphane (5μM, 24h; sulf-treated) increased cell-lysate NAD(P)H:quinone oxidoreductase (NQO1) activity by 5.7 ± 0.6 (mean ± SEM)-fold, but intact-cell NQO1 activity by only 2.8 ± 0.1-fold compared to control cells. To evaluate the hypothesis that the threshold for sulforaphane-induced intact-cell NQO1 activity reflects a limitation in the capacity to supply NADPH at a sufficient rate to drive all the induced NQO1 to its maximum activity, total KOH-extractable pyridine nucleotides were measured in cells treated with duroquinone to stimulate maximal NQO1 activity. NQO1 activation increased NADP(+) in control and sulf-treated cells, with the effect more pronounced in the sulf-treated cells, in which the NADPH was also decreased. Glucose-6-phosphate dehydrogenase (G-6-PDH) inhibition partially blocked NQO1 activity in control and sulf-treated cells, but G-6-PDH overexpression via transient transfection with the human cDNA alleviated neither the restriction on intact sulf-treated cell NQO1 activity nor the impact on the NADPH/NADP(+) ratios. Intracellular ATP levels were not affected by NQO1 activation in control or sulf-treated cells. An increased dependence on extracellular glucose and a rightward shift in the K(m) for extracellular glucose were observed in NQO1-stimulated sulf-treated vs control cells. The data suggest that glucose transport in the sulf-treated cells may be insufficient to support the increased metabolic demand for pentose phosphate pathway-generated NADPH as an explanation for the NQO1 threshold.


BMC Biochemistry | 2014

Protein expression, characterization and activity comparisons of wild type and mutant DUSP5 proteins

Jaladhi Nayak; Adam Gastonguay; Marat R. Talipov; Padmanabhan Vakeel; Elise A. Span; Kelsey S. Kalous; Raman G. Kutty; Davin R. Jensen; P. R. Pokkuluri; Daniel S. Sem; Rajendra Rathore; Ramani Ramchandran

BackgroundThe mitogen-activated protein kinases (MAPKs) pathway is critical for cellular signaling, and proteins such as phosphatases that regulate this pathway are important for normal tissue development. Based on our previous work on dual specificity phosphatase-5 (DUSP5), and its role in embryonic vascular development and disease, we hypothesized that mutations in DUSP5 will affect its function.ResultsIn this study, we tested this hypothesis by generating full-length glutathione-S-transferase-tagged DUSP5 and serine 147 proline mutant (S147P) proteins from bacteria. Light scattering analysis, circular dichroism, enzymatic assays and molecular modeling approaches have been performed to extensively characterize the protein form and function. We demonstrate that both proteins are active and, interestingly, the S147P protein is hypoactive as compared to the DUSP5 WT protein in two distinct biochemical substrate assays. Furthermore, due to the novel positioning of the S147P mutation, we utilize computational modeling to reconstruct full-length DUSP5 and S147P to predict a possible mechanism for the reduced activity of S147P.ConclusionTaken together, this is the first evidence of the generation and characterization of an active, full-length, mutant DUSP5 protein which will facilitate future structure-function and drug development-based studies.


Circulation-cardiovascular Genetics | 2016

Sucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function.

Stephanie M. Cossette; Vijesh Jagdish Bhute; Xiaoping Bao; Leanne Harmann; Mark Horswill; Indranil Sinha; Adam Gastonguay; Shabnam Pooya; Michelle Bordas; Suresh Kumar; Shama P. Mirza; Sean P. Palecek; Jennifer L. Strande; Ramani Ramchandran

Background—Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate–activated kinase) family, was essential for cardiac metabolism in mammals. Snrk global homozygous knockout (KO) mice die at postnatal day 0, and conditional deletion of Snrk in cardiomyocytes (Snrk cmcKO) leads to cardiac failure and death by 8 to 10 months. Methods and Results—We performed additional cardiac functional studies using echocardiography and identified further cardiac functional deficits in Snrk cmcKO mice. Nuclear magnetic resonance-based metabolomics analysis identified key metabolic pathway deficits in SNRK knockdown cardiomyocytes in vitro. Specifically, metabolites involved in lipid metabolism and oxidative phosphorylation are altered, and perturbations in these pathways can result in cardiac function deficits and heart failure. A phosphopeptide-based proteomic screen identified ROCK (Rho-associated kinase) as a putative substrate for SNRK, and mass spec-based fragment analysis confirmed key amino acid residues on ROCK that are phosphorylated by SNRK. Western blot analysis on heart lysates from Snrk cmcKO adult mice and SNRK knockdown cardiomyocytes showed increased ROCK activity. In addition, in vivo inhibition of ROCK partially rescued the in vivo Snrk cmcKO cardiac function deficits. Conclusions—Collectively, our data suggest that SNRK in cardiomyocytes is responsible for maintaining cardiac metabolic homeostasis, which is mediated in part by ROCK, and alteration of this homeostasis influences cardiac function in the adult heart.


BMC Biochemistry | 2015

Identification of inhibitors that target dual-specificity phosphatase 5 provide new insights into the binding requirements for the two phosphate pockets.

Terrence S. Neumann; Elise A. Span; Kelsey S. Kalous; Robert D. Bongard; Adam Gastonguay; Michael Lepley; Raman G. Kutty; Jaladhi Nayak; Chris Bohl; Rachel G. Lange; Majher I. Sarker; Marat R. Talipov; Rajendra Rathore; Ramani Ramchandran; Daniel S. Sem

Collaboration


Dive into the Adam Gastonguay's collaboration.

Top Co-Authors

Avatar

Ramani Ramchandran

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Daniel S. Sem

Concordia University Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Ellen L. Lorimer

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jaladhi Nayak

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Keguo Li

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raman G. Kutty

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Hauser

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Chris Bohl

Concordia University Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge