Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Grundhoff is active.

Publication


Featured researches published by Adam Grundhoff.


Nature | 2005

SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells

Christopher S. Sullivan; Adam Grundhoff; Satvir S. Tevethia; James M. Pipas; Don Ganem

MicroRNAs (miRNAs) are small (∼ 22-nucleotide) RNAs that in lower organisms serve important regulatory roles in development and gene expression, typically by forming imperfect duplexes with target messenger RNAs. miRNAs have also been described in mammalian cells and in infections with Epstein–Barr virus (EBV), but the function of most of them is unknown. Although one EBV miRNA probably altered the processing of a viral mRNA, the regulatory significance of this event is uncertain, because other transcripts exist that can supply the targeted function. Here we report the identification of miRNAs encoded by simian virus 40 (SV40) and define their functional significance for viral infection. SVmiRNAs accumulate at late times in infection, are perfectly complementary to early viral mRNAs, and target those mRNAs for cleavage. This reduces the expression of viral T antigens but does not reduce the yield of infectious virus relative to that generated by a mutant lacking SVmiRNAs. However, wild-type SV40-infected cells are less sensitive than the mutant to lysis by cytotoxic T cells, and trigger less cytokine production by such cells. Thus, viral evolution has taken advantage of the miRNA pathway to generate effectors that enhance the probability of successful infection.


Journal of Clinical Investigation | 2004

Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis

Adam Grundhoff; Don Ganem

Kaposi sarcoma-associated (KS-associated) herpesvirus (KSHV) infection is linked to the development of both KS and several lymphoproliferative diseases. In all cases, the resulting tumor cells predominantly display latent viral infection. KS tumorigenesis requires ongoing lytic viral replication as well, however, for reasons that are unclear but have been suggested to involve the production of angiogenic or mitogenic factors by lytically infected cells. Here we demonstrate that proliferating cells infected with KSHV in vitro display a marked propensity to segregate latent viral genomes, with only a variable but small subpopulation being capable of stable episome maintenance. Stable maintenance is not due to the enhanced production of viral or host trans-acting factors, but is associated with cis-acting, epigenetic changes in the viral chromosome. These results indicate that acquisition of stable KSHV latency is a multistep process that proceeds with varying degrees of efficiency in different cell types. They also suggest an additional role for lytic replication in sustaining KS tumorigenesis: namely, the recruitment of new cells to latency to replace those that have segregated the viral episome.


Virology | 2011

Virus-encoded microRNAs

Adam Grundhoff; Christopher S. Sullivan

MicroRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of viral gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category is a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection.


PLOS Pathogens | 2010

Micro RNAs of Epstein-Barr Virus Promote Cell Cycle Progression and Prevent Apoptosis of Primary Human B Cells

Eri Seto; Andreas Moosmann; Sebastian Grömminger; Nicole Walz; Adam Grundhoff; Wolfgang Hammerschmidt

Cellular and viral microRNAs (miRNAs) are involved in many different processes of key importance and more than 10,000 miRNAs have been identified so far. In general, relatively little is known about their biological functions in mammalian cells because their phenotypic effects are often mild and many of their targets still await identification. The recent discovery that Epstein-Barr virus (EBV) and other herpesviruses produce their own, barely conserved sets of miRNAs suggests that these viruses usurp the host RNA silencing machinery to their advantage in contrast to the antiviral roles of RNA silencing in plants and insects. We have systematically introduced mutations in EBVs precursor miRNA transcripts to prevent their subsequent processing into mature viral miRNAs. Phenotypic analyses of these mutant derivatives of EBV revealed that the viral miRNAs of the BHRF1 locus inhibit apoptosis and favor cell cycle progression and proliferation during the early phase of infected human primary B cells. Our findings also indicate that EBVs miRNAs are not needed to control the exit from latency. The phenotypes of viral miRNAs uncovered by this genetic analysis indicate that they contribute to EBV-associated cellular transformation rather than regulate viral genes of EBVs lytic phase.


PLOS Pathogens | 2010

The Epigenetic Landscape of Latent Kaposi Sarcoma-Associated Herpesvirus Genomes

Thomas Günther; Adam Grundhoff

Herpesvirus latency is generally thought to be governed by epigenetic modifications, but the dynamics of viral chromatin at early timepoints of latent infection are poorly understood. Here, we report a comprehensive spatial and temporal analysis of DNA methylation and histone modifications during latent infection with Kaposi Sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi Sarcoma and primary effusion lymphoma (PEL). By use of high resolution tiling microarrays in conjunction with immunoprecipitation of methylated DNA (MeDIP) or modified histones (chromatin IP, ChIP), our study revealed highly distinct landscapes of epigenetic modifications associated with latent KSHV infection in several tumor-derived cell lines as well as de novo infected endothelial cells. We find that KSHV genomes are subject to profound methylation at CpG dinucleotides, leading to the establishment of characteristic global DNA methylation patterns. However, such patterns evolve slowly and thus are unlikely to control early latency. In contrast, we observed that latency-specific histone modification patterns were rapidly established upon a de novo infection. Our analysis furthermore demonstrates that such patterns are not characterized by the absence of activating histone modifications, as H3K9/K14-ac and H3K4-me3 marks were prominently detected at several loci, including the promoter of the lytic cycle transactivator Rta. While these regions were furthermore largely devoid of the constitutive heterochromatin marker H3K9-me3, we observed rapid and widespread deposition of H3K27-me3 across latent KSHV genomes, a bivalent modification which is able to repress transcription in spite of the simultaneous presence of activating marks. Our findings suggest that the modification patterns identified here induce a poised state of repression during viral latency, which can be rapidly reversed once the lytic cycle is induced.


Journal of Virology | 2003

The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Permits Replication of Terminal Repeat-Containing Plasmids

Adam Grundhoff; Don Ganem

ABSTRACT The latency-associated nuclear antigen (LANA) of Kaposis sarcoma-associated herpesvirus can associate with mitotic chromosomes and promote latent episome maintenance and segregation. Here we report that LANA also mediates the replication of plasmid DNAs bearing viral terminal repeats. The predicted secondary structure of LANAs C terminus reveals striking similarity to the known structure of the DNA-binding domain of Epstein-Barr virus EBNA1, despite the absence of primary sequence homology between these proteins, suggesting conservation of the key mechanistic features of latent gammaherpesvirus DNA replication.


Journal of Virology | 2001

Mechanisms Governing Expression of the v-FLIP Gene of Kaposi's Sarcoma-Associated Herpesvirus

Adam Grundhoff; Don Ganem

ABSTRACT Open reading frame 71 (ORF 71) of Kaposis sarcoma-associated herpesvirus (KSHV) encodes a death effector domain-containing protein that is homologous to cellular FLIPs (FLICE-inhibitory proteins) and is proposed to inhibit Fas-mediated apoptosis. Transcripts bearing ORF 71 (v-FLIP) sequences are present in all latently infected cells. However, mapping studies reveal these to be bi- or tricistronic mRNAs with ORF 71 located 3′ to ORFs 72 (v-cyclin) and 73 (latency-associated nuclear antigen), raising the question of how efficient expression of v-FLIP is achieved. We explored this question by examining the expression of model bicistronic (v-cyclin/LUC) transcripts in which a luciferase (LUC) reporter replaced v-FLIP coding sequences. SLK spindle cells transfected with such constructs efficiently expressed luciferase from the 3′ position, and this expression was independent of the expression of the 5′ v-cyclin gene. Surprisingly, transcript mapping showed that in these cultures, efficient splicing occurred to remove v-cyclin sequences and generate monocistronic LUC transcripts. Similar splicing events produced monocistronic v-FLIP transcripts in KSHV-infected primary effusion lymphoma cells. However, these RNAs were of low abundance and were inducible by treatment with 12-O-tetradecanoylphorbol-13-acetate. Examination of the more abundant bicistronic latent RNAs revealed the presence of an efficient internal ribosome entry site (IRES) overlapping ORF 72 coding sequences. Thus, two potential mechanisms exist for v-FLIP expression, but the evidence suggests that IRES-mediated internal translational initiation on latent polycistronic mRNAs is the principal source of v-FLIP in latency.


Oncogene | 2014

Epstein–Barr virus maintains lymphomas via its miRNAs

David T. Vereide; Eri Seto; Ya-Fang Chiu; Mitchell Hayes; Takanobu Tagawa; Adam Grundhoff; Wolfgang Hammerschmidt; Bill Sugden

Epstein-Barr virus (EBV) has evolved exquisite controls over its host cells, human B lymphocytes, not only directing these cells during latency to proliferate and thereby expand the pool of infected cells, but also to survive and thereby persist for the lifetime of the infected individual. Although these activities ensure the virus is successful, they also make the virus oncogenic, particularly when infected people are immunosuppressed. Here we show, strikingly, that one set of EBV’s microRNAs (miRNAs) both sustain Burkitt’s lymphoma (BL) cells in the absence of other viral oncogenes and promote the transformation of primary B lymphocytes. BL cells were engineered to lose EBV and found to die by apoptosis and could be rescued by constitutively expressing viral miRNAs in them. Two of these EBV miRNAs were found to target caspase 3 to inhibit apoptosis at physiological concentrations.


Virology | 2009

Murine Polyomavirus encodes a microRNA that cleaves early RNA transcripts but is not essential for experimental infection

Christopher S. Sullivan; Chang K. Sung; Christopher D. Pack; Adam Grundhoff; Aron E. Lukacher; Thomas L. Benjamin; Don Ganem

MicroRNAs are small regulatory RNAs that post-transcriptionally regulate gene expression and can be encoded by viral as well as cellular genomes. The functions of most viral miRNAs are unknown and few have been studied in an in vivo context. Here we show that the murine polyomavirus (PyV) encodes a precursor microRNA that is processed into two mature microRNAs, both of which are active at directing the cleavage of the early PyV mRNAs. Furthermore, we identify a deletion mutant of polyomavirus that is defective in encoding the microRNAs. This mutant replicates normally and transforms cultured cells with efficiencies comparable to wildtype PyV. The miRNA mutant is competent to establish a transient infection of mice following parenteral inoculation, and is cleared post infection at approximately the same rate as the wildtype virus. In addition, under these laboratory conditions, we observe no differences in anti-viral CD8 T cell responses. These results indicate that PyV miRNA expression is not essential for infection of cultured cells or experimentally inoculated mice, and raise the possibility that its role in natural infection might involve aspects of acquisition or spread that are not recapitulated by experimental inoculation.


Journal of Virology | 2005

RNAs in the Virion of Kaposi's Sarcoma-Associated Herpesvirus

Jill T. Bechtel; Adam Grundhoff; Don Ganem

ABSTRACT De novo infection of cultured cells with Kaposis sarcoma-associated herpesvirus (KSHV) typically results in a latent infection. Recently, however, it has been reported that a subset of lytic mRNAs can be detected in cells shortly after KSHV infection; this expression is transient and eventually subsides, leading to latent infection (H. H. Krishnan et al., J. Virol 78:3601-3620, 2004). Since it has been shown that viral RNAs can be packaged into other herpesvirus virions, we sought to determine if KSHV virions contained RNAs and, if so, whether these RNAs contributed to the pool of lytic transcripts detected immediately after infection. Using DNA microarray, reverse transcription (RT)-PCR, and Northern blotting analyses, we identified 11 virally encoded RNAs in KSHV virions. These corresponded in size to the full-length mRNAs found in cytoplasmic RNA, and at least one was directly demonstrated to be translated upon infection in the presence of actinomycin D. Ten of these RNAs correspond to transcripts reported by Krishnan et al. at early times of infection, representing ca. 30% of such RNAs. Thus, import of RNAs in virions can account for some but not all of the early-appearing lytic transcripts. Quantitative RT-PCR analysis of infected-cell RNA demonstrated that most of the virion RNAs were very abundant at late times of infection, consistent with nonspecific incorporation during budding. However, the intracellular levels of one virion mRNA, encoding the viral protease, were much lower than those of transcripts not packaged in the virus particle, strongly suggesting that it may be incorporated by a specific mechanism.

Collaboration


Dive into the Adam Grundhoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Postel

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Frank Buchholz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicole Walz

Heinrich Pette Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge