Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam I. Marcus is active.

Publication


Featured researches published by Adam I. Marcus.


International Journal of Cancer | 2011

Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation

Jose T. Thaiparambil; Laura Bender; Thota Ganesh; Erik R. Kline; Pritty Patel; Yuan Liu; Mourad Tighiouart; Paula M. Vertino; R. Donald Harvey; Anapatricia Garcia; Adam I. Marcus

Withaferin A (WFA) is purified from the plant Withania somnifera and inhibits the vimentin cytoskeleton. Vimentin overexpression in cancer correlates with metastatic disease, induction of epithelial to mesenchymal transition and reduced patient survival. As vimentin functions in cell motility, we wanted to test the hypothesis that WFA inhibits cancer metastasis by disrupting vimentin function. These data showed that WFA had weak cytotoxic and apoptotic activity at concentrations less than or equal to 500 nM, but retained potent anti‐invasive activity at these low doses. Imaging of breast cancer cell lines revealed that WFA induces perinuclear vimentin accumulation followed by rapid vimentin depolymerization. A concomitant induction of vimentin ser56 phosphorylation was observed, which is consistent with vimentin disassembly. Structure activity relationships were established using a set of chemically modified WFA analogs and showed that the predicted vimentin‐binding region of WFA is necessary to induce vimentin ser56 phosphorylation and for its anti‐invasive activity. Pharmacokinetic studies in mice revealed that WFA reaches peak concentrations up to 2 μM in plasma with a half‐life of 1.36 hr following a single 4 mg/kg dose. In a breast cancer metastasis mouse model, WFA showed dose‐dependent inhibition of metastatic lung nodules and induced vimentin ser56 phosphorylation, with minimal toxicity to lung tissue. Based upon these studies, we conclude that WFA is a potent breast cancer anti‐metastatic agent and the anti‐metastatic activity of WFA is, at least in part, mediated through its effects on vimentin and vimentin ser56 phosphorylation.


Cancer Research | 2005

The Synergistic Combination of the Farnesyl Transferase Inhibitor Lonafarnib and Paclitaxel Enhances Tubulin Acetylation and Requires a Functional Tubulin Deacetylase

Adam I. Marcus; Jun Zhou; Aurora O'Brate; Ernest Hamel; Jason C. Wong; Michael Nivens; Adel K. El-Naggar; Tso-Pang Yao; Fadlo R. Khuri; Paraskevi Giannakakou

Farnesyl transferase (FT) inhibitors (FTI) are anticancer agents developed to target oncogenic Ras proteins by inhibiting Ras farnesylation. FTIs potently synergize with paclitaxel and other microtubule-stabilizing drugs; however, the mechanistic basis underlying this synergistic interaction remains elusive. Here we show that the FTI lonafarnib affects the microtubule cytoskeleton resulting in microtubule bundle formation, increased microtubule stabilization and acetylation, and suppression of microtubule dynamics. Notably, treatment with the combination of low doses of lonafarnib with paclitaxel markedly enhanced tubulin acetylation (a marker of microtubule stability) as compared with either drug alone. This synergistic effect correlated with FT inhibition and was accompanied by a synergistic increase in mitotic arrest and cell death. Mechanistically, we show that the combination of lonafarnib and paclitaxel inhibits the in vitro deacetylating activity of the only known tubulin deacetylase, histone deacetylase 6 (HDAC6). In addition, the lonafarnib/taxane combination is synergistic only in cells lines expressing the wild-type HDAC6, but not a catalytic-mutant HDAC6, revealing that functional HDAC6 is required for the synergy of lonafarnib with taxanes. Furthermore, tubacin, a specific HDAC6 inhibitor, synergistically enhanced tubulin acetylation in combination with paclitaxel, similar to the combination of lonafarnib and paclitaxel. Taken together, these data suggest a relationship between FT inhibition, HDAC6 function, and cell death, providing insight into the putative molecular basis of the lonafarnib/taxane synergistic antiproliferative combination.


Cancer Research | 2008

The Tumor Suppressor LKB1 Regulates Lung Cancer Cell Polarity by Mediating cdc42 Recruitment and Activity

Shumin M. Zhang; Katherine J. Schafer-Hales; Fadlo R. Khuri; Wei Zhou; Paula M. Vertino; Adam I. Marcus

The tumor suppressor LKB1 is mutated in 30% of non-small cell lung cancer (NSCLC) tumors and cell lines and is proposed to be a key regulator of epithelial cell polarity; however, how LKB1 regulates cancer cell polarity is not known. The experiments described herein show for the first time that LKB1 is a dynamic, actin-associated protein that rapidly polarizes to the leading edge of motile cancer cells. LKB1 proves to be essential for NSCLC polarity, because LKB1 depletion results in classic cell polarity defects, such as aberrant Golgi positioning, reduced lamellipodia formation, and aberrant morphology. To probe how LKB1 regulates these events, we show that LKB1 colocalizes at the cellular leading edge with two key components of the polarity pathway - the small rho GTPase cdc42 and its downstream binding partner p21-activated kinase (PAK). Importantly, LKB1 functionality is required for cdc42 polarization to the leading edge, maintaining active cdc42 levels, and downstream PAK phosphorylation. To do this, LKB1 interacts only with active form of cdc42 and PAK, but not with inactive cdc42. Taken together, these results show that LKB1 is a critical mediator of the NSCLC polarity program in lung cancer cells through a novel LKB1-cdc42-PAK pathway.


Molecular Cancer Therapeutics | 2008

2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition.

Diansheng Zhong; Xiuju Liu; Katherine J. Schafer-Hales; Adam I. Marcus; Fadlo R. Khuri; Shi-Yong Sun; Wei Zhou

The compound 2-deoxyglucose (2-DG) enhances chemotherapy/radiotherapy in cell lines and animal models, prompting two phase I clinical trials with this cancer therapeutic. Although its mechanism of action has not been fully elucidated, it is hypothesized that the molecular basis of 2-DG activity is related to glycolysis inhibition. Here, we report that 2-DG induced Akt phosphorylation at Thr308 and Ser473 as early as 15 min post-treatment. These phosphorylation events required phosphatidylinositol-3-kinase activity but were not related to LKB1/AMP-activated protein kinase signaling, the inhibition of glycolysis or epidermal growth factor receptor signaling. The 2-DG-mediated Akt phosphorylation also led to the phosphorylation of Akt downstream targets, such as Foxo3a, GSK3β, and Chk1. Because the functional consequence of Akt activation includes chemotherapy/radiotherapy resistance, our data suggested that the combination of phosphatidylinositol-3-kinase/Akt inhibitory agents in 2-DG-based chemotherapy/radiotherapy may result in enhanced therapeutic efficacy. [Mol Cancer Ther 2008;7(4):809–17]


Molecular Cancer Therapeutics | 2007

Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function

Katherine J. Schafer-Hales; Jon Iaconelli; James P. Snyder; Andrew Prussia; James H. Nettles; Adel K. El-Naggar; Fadlo R. Khuri; Paraskevi Giannakakou; Adam I. Marcus

Farnesyl transferase inhibitors (FTI) exhibit anticancer activity as a single agent in preclinical studies and show promise in combination with other therapeutics in clinical trials. Previous studies show that FTIs arrest cancer cells in mitosis; however, the mechanism by which this occurs is unclear. Here, we observed that treatment of various cancer cell lines with the FTI lonafarnib caused mitotic chromosomal alignment defects, leaving cells in a pseudometaphase state, whereby both aligned chromosomes and chromosomes juxtaposed to the spindle poles (termed “lagging chromosomes”) were observed in the same cell. To determine how this occurs, we investigated the functionality of two farnesylated mitotic proteins, CENP-E and CENP-F, which mediate chromosomal capture and alignment. The data show that lonafarnib in proliferating cancer cells depletes CENP-E and CENP-F from metaphase but not prometaphase kinetochores. Loss of CENP-E and CENP-F metaphase localization triggered aberrant chromosomal maintenance, causing aligned chromosomes to be prematurely released from the spindle equator and become lagging chromosomes, resulting in a mitotic delay. Furthermore, lonafarnib treatment reduces sister kinetochore tension and activates the BubR1 spindle checkpoint, suggesting that farnesylation of CENP-E and CENP-F is critical for their functionality in maintaining kinetochore-microtubule interactions. Importantly, apparently similar chromosomal alignment defects were observed in head and neck tumors samples from a phase I trial with lonafarnib, providing support that lonafarnib disrupts chromosomal maintenance in human cancers. Lastly, to examine how farnesylation could regulate CENP-E in mediating kinetochore-microtubule attachments, we examined possible docking motifs of a farnesyl group on the outer surface of the microtubule. This analysis revealed three hydrophobic patches on the tubulin dimer for insertion of a farnesyl group, alluding to the possibility of an association between a farnesyl group and the microtubule. [Mol Cancer Ther 2007;6(4):1317–28]


International Immunopharmacology | 2012

Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): anti-inflammatory and anti-cancer properties

Anlys Olivera; Terry W. Moore; Fang Hu; Andrew P. Brown; Aiming Sun; Dennis C. Liotta; James P. Snyder; Younghyoun Yoon; Hyunsuk Shim; Adam I. Marcus; Andrew H. Miller; Thaddeus W.W. Pace

Nuclear factor kappa B (NF-κB) is a key signaling molecule in the elaboration of the inflammatory response. Data indicate that curcumin, a natural ingredient of the curry spice turmeric, acts as a NF-κB inhibitor and exhibits both anti-inflammatory and anti-cancer properties. Curcumin analogs with enhanced activity on NF-κB and other inflammatory signaling pathways have been developed including the synthetic monoketone compound 3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24). 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31) is a structurally-related curcumin analog whose potency for NF-κB inhibition has yet to be determined. To examine the activity of EF31 compared to EF24 and curcumin, mouse RAW264.7 macrophages were treated with EF31, EF24, curcumin (1-100 μM) or vehicle (DMSO 1%) for 1h. NF-κB pathway activity was assessed following treatment with lipopolysaccharide (LPS) (1 μg/mL). EF31 (IC(50)~5 μM) exhibited significantly more potent inhibition of LPS-induced NF-κB DNA binding compared to both EF24 (IC(50)~35 μM) and curcumin (IC(50) >50 μM). In addition, EF31 exhibited greater inhibition of NF-κB nuclear translocation as well as the induction of downstream inflammatory mediators including pro-inflammatory cytokine mRNA and protein (tumor necrosis factor-α, interleukin-1β, and interleukin-6). Regarding the mechanism of these effects on NF-κB, EF31 (IC(50)~1.92 μM) exhibited significantly greater inhibition of IκB kinase β compared to EF24 (IC(50)~131 μM). Finally, EF31 demonstrated potent toxicity in NF-κB-dependent cancer cell lines while having minimal and reversible toxicity in RAW264.7 macrophages. These data indicate that EF31 is a more potent inhibitor of NF-κB activity than either EF24 or curcumin while exhibiting both anti-inflammatory and anticancer activities. Thus, EF31 represents a promising curcumin analog for further therapeutic development.


Journal of Biological Chemistry | 2014

Growth Arrest by the Antitumor Steroidal Lactone Withaferin A in Human Breast Cancer Cells Is Associated with Down-regulation and Covalent Binding at Cysteine 303 of β-Tubulin

Marie Lue Antony; Joomin Lee; Eun Ryeong Hahm; Su Hyeong Kim; Adam I. Marcus; Vandana Kumari; Xinhua Ji; Zhen Yang; Courtney L. Vowell; Peter Wipf; Guy Uechi; Nathan A. Yates; Guillermo Romero; Saumendra N. Sarkar

Background: The tubulin microtubule network remains an attractive anticancer target. Results: The antitumor steroidal lactone withaferin A (WA) down-regulates tubulin and binds to Cys303 of β-tubulin. Conclusion: Tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. Significance: Favorable safety and pharmacokinetic profiles merit clinical investigation of WA for prevention and/or treatment of breast cancer. Withaferin A (WA), a C5,C6-epoxy steroidal lactone derived from a medicinal plant (Withania somnifera), inhibits growth of human breast cancer cells in vitro and in vivo and prevents mammary cancer development in a transgenic mouse model. However, the mechanisms underlying the anticancer effect of WA are not fully understood. Herein, we report that tubulin is a novel target of WA-mediated growth arrest in human breast cancer cells. The G2 and mitotic arrest resulting from WA exposure in MCF-7, SUM159, and SK-BR-3 cells was associated with a marked decrease in protein levels of β-tubulin. These effects were not observed with the naturally occurring C6,C7-epoxy analogs of WA (withanone and withanolide A). A non-tumorigenic normal mammary epithelial cell line (MCF-10A) was markedly more resistant to mitotic arrest by WA compared with breast cancer cells. Vehicle-treated control cells exhibited a normal bipolar spindle with chromosomes aligned along the metaphase plate. In contrast, WA treatment led to a severe disruption of normal spindle morphology. NMR analyses revealed that the A-ring enone in WA, but not in withanone or withanolide A, was highly reactive with cysteamine and rapidly succumbed to irreversible nucleophilic addition. Mass spectrometry demonstrated direct covalent binding of WA to Cys303 of β-tubulin in MCF-7 cells. Molecular docking indicated that the WA-binding pocket is located on the surface of β-tubulin and characterized by a hydrophobic floor, a hydrophobic wall, and a charge-balanced hydrophilic entrance. These results provide novel insights into the mechanism of growth arrest by WA in breast cancer cells.


Molecular and Cellular Biology | 2012

AMPK Regulates Mitotic Spindle Orientation through Phosphorylation of Myosin Regulatory Light Chain

Jose T. Thaiparambil; Carrie Eggers; Adam I. Marcus

ABSTRACT The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine172 phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine19 phosphorylated MRLC (pMRLCser19) and spindle pole-associated pMRLCser19 are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLCser19 spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLCser19 to control spindle orientation via regulation of actin cortex-astral microtubule attachments.


Journal of Biological Chemistry | 2007

The Farnesyltransferase Inhibitor Lonafarnib Induces CCAAT/Enhancer-binding Protein Homologous Protein-dependent Expression of Death Receptor 5, Leading to Induction of Apoptosis in Human Cancer Cells

Shi-Yong Sun; Xiangguo Liu; Wei Zou; Ping Yue; Adam I. Marcus; Fadlo R. Khuri

Pre-clinical studies have demonstrated that farnesyltransferase inhibitors (FTIs) induce growth arrest or apoptosis in various human cancer cells independently of Ras mutations. However, the underlying mechanism remains unknown. Death receptor 5 (DR5) is a pro-apoptotic protein involved in mediating the extrinsic apoptotic pathway. Its role in FTI-induced apoptosis has not been reported. In this study, we investigated the modulation of DR5 by the FTI lonafarnib and the involvement of DR5 up-regulation in FTI-induced apoptosis. Lonafarnib activated caspase-8 and its downstream caspases, whereas the caspase-8-specific inhibitor benzyloxycarbonyl-Ile-Glu(methoxy)-Thr-Asp(methoxy)-fluoromethyl ketone or small interfering RNA abrogated lonafarnib-induced apoptosis, indicating that lonafarnib induces caspase-8-dependent apoptosis. Lonafarnib up-regulated DR5 expression, increased cell-surface DR5 distribution, and enhanced tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Overexpression of a dominant-negative Fas-associated death domain mutant or silencing of DR5 expression using small interfering RNA attenuated lonafarnib-induced apoptosis. These results indicate a critical role of the DR5-mediated extrinsic apoptotic pathway in lonafarnib-induced apoptosis. By analyzing the DR5 promoter, we found that lonafarnib induced a CCAAT/enhancer-binding protein homologous protein (CHOP)-dependent transactivation of the DR5 promoter. Lonafarnib increased CHOP expression, whereas silencing of CHOP expression abrogated lonafarnib-induced DR5 expression. These results thus indicate that lonafarnib induces CHOP-dependent DR5 up-regulation. We conclude that CHOP-dependent DR5 up-regulation contributes to lonafarnib-induced apoptosis.


Theranostics | 2014

uPAR-targeted Optical Imaging Contrasts as Theranostic Agents for Tumor Margin Detection

Lily Yang; Hari Krishna Sajja; Zehong Cao; Weiping Qian; Laura Bender; Adam I. Marcus; Malgorzata Lipowska; William C. Wood; Y. Andrew Wang

Complete removal of tumors by surgery is the most important prognostic factor for cancer patients with the early stage cancers. The ability to identify invasive tumor edges of the primary tumor, locally invaded small tumor lesions, and drug resistant residual tumors following neoadjuvant therapy during surgery should significantly reduce the incidence of local tumor recurrence and improve survival of cancer patients. In this study, we report that urokinase plasminogen activator (uPA) and its receptor (uPAR) are the ligand/cell surface target pair for the development of targeted optical imaging probes for enhancing imaging contrasts in the tumor border. Recombinant peptides of the amino terminal fragment (ATF) of the receptor binding domain of uPA were labeled with near infrared fluorescence (NIR) dye molecules either as peptide-imaging or peptide-conjugated nanoparticle imaging probes. Systemic delivery of the uPAR-targeted imaging probes in mice bearing orthotopic human breast or pancreatic tumor xenografts or mouse mammary tumors led to the accumulation of the probes in the tumor and stromal cells, resulting in strong signals for optical imaging of tumors and identification of tumor margins. Histological analysis showed that a high level of uPAR-targeted nanoparticles was present in the tumor edge or active tumor stroma immediately adjacent to the tumor cells. Furthermore, following targeted therapy using uPAR-targeted theranostic nanoparticles, residual tumors were detectable by optical imaging through the imaging contrasts produced by NIR-dye-labeled theranostic nanoparticles in drug resistant tumor cells. Therefore, results of our study support the potential of the development of uPAR-targeted imaging and theranostic agents for image-guided surgery.

Collaboration


Dive into the Adam I. Marcus's collaboration.

Top Co-Authors

Avatar

Fadlo R. Khuri

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koon Yin Kong

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

May D. Wang

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge