Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam J. Bogdanove is active.

Publication


Featured researches published by Adam J. Bogdanove.


Nucleic Acids Research | 2011

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

Tomas Cermak; Erin L. Doyle; Michelle Christian; Li-Li Wang; Yong Zhang; Clarice L. Schmidt; Joshua A. Baller; Nikunj V. Somia; Adam J. Bogdanove; Daniel F. Voytas

TALENs are important new tools for genome engineering. Fusions of transcription activator-like (TAL) effectors of plant pathogenic Xanthomonas spp. to the FokI nuclease, TALENs bind and cleave DNA in pairs. Binding specificity is determined by customizable arrays of polymorphic amino acid repeats in the TAL effectors. We present a method and reagents for efficiently assembling TALEN constructs with custom repeat arrays. We also describe design guidelines based on naturally occurring TAL effectors and their binding sites. Using software that applies these guidelines, in nine genes from plants, animals and protists, we found candidate cleavage sites on average every 35 bp. Each of 15 sites selected from this set was cleaved in a yeast-based assay with TALEN pairs constructed with our reagents. We used two of the TALEN pairs to mutate HPRT1 in human cells and ADH1 in Arabidopsis thaliana protoplasts. Our reagents include a plasmid construct for making custom TAL effectors and one for TAL effector fusions to additional proteins of interest. Using the former, we constructed de novo a functional analog of AvrHah1 of Xanthomonas gardneri. The complete plasmid set is available through the non-profit repository AddGene and a web-based version of our software is freely accessible online.


Science | 2009

A Simple Cipher Governs DNA Recognition by TAL Effectors

Matthew J. Moscou; Adam J. Bogdanove

TAL Order Xanthomonas bacteria attack their plant hosts by delivering their own transcription-activator–like (TAL) proteins into the plant cell nucleus and alter the plants gene regulation (see the Perspective by Voytas and Joung). Moscou and Bogdanove (p. 1501, published online 29 October: see the cover) and Boch et al. (p. 1509, published online 29 October) have now discovered how the similar but not identical repeats in the TAL proteins encode the specificity needed for the proteins to find their targets. Each repeat is specific for one DNA base pair, a specificity encoded by hypervariable amino acid positions. Combining several repeats with different amino acids in the hypervariable positions allowed the production of new effectors that targeted new DNA sites. Xanthomonas bacteria use an amino acid–based code to target effector molecules to specific DNA sequences. TAL effectors of plant pathogenic bacteria in the genus Xanthomonas bind host DNA and activate genes that contribute to disease or turn on defense. Target specificity depends on an effector-variable number of typically 34 amino acid repeats, but the mechanism of recognition is not understood. We show that a repeat-variable pair of residues specifies the nucleotides in the target site, one pair to one nucleotide, with no apparent context dependence. Our finding represents a previously unknown mechanism for protein-DNA recognition that explains TAL effector specificity, enables target site prediction, and opens prospects for use of TAL effectors in research and biotechnology.


Genetics | 2010

Targeting DNA Double-Strand Breaks with TAL Effector Nucleases

Michelle Christian; Tomas Cermak; Erin L. Doyle; Clarice L. Schmidt; Feng Zhang; Aaron W. Hummel; Adam J. Bogdanove; Daniel F. Voytas

Engineered nucleases that cleave specific DNA sequences in vivo are valuable reagents for targeted mutagenesis. Here we report a new class of sequence-specific nucleases created by fusing transcription activator-like effectors (TALEs) to the catalytic domain of the FokI endonuclease. Both native and custom TALE-nuclease fusions direct DNA double-strand breaks to specific, targeted sites.


Science | 2011

TAL Effectors: Customizable Proteins for DNA Targeting

Adam J. Bogdanove; Daniel F. Voytas

Generating and applying new knowledge from the wealth of available genomic information is hindered, in part, by the difficulty of altering nucleotide sequences and expression of genes in living cells in a targeted fashion. Progress has been made in engineering DNA binding domains to direct proteins to particular sequences for mutagenesis or manipulation of transcription; however, achieving the requisite specificities has been challenging. Transcription activator–like (TAL) effectors of plant pathogenic bacteria contain a modular DNA binding domain that appears to overcome this challenge. Comprising tandem, polymorphic amino acid repeats that individually specify contiguous nucleotides in DNA, this domain is being deployed in DNA targeting for applications ranging from understanding gene function in model organisms to improving traits in crop plants to treating genetic disorders in people.


Nucleic Acids Research | 2012

TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction

Erin L. Doyle; Nicholas J. Booher; Daniel Standage; Daniel F. Voytas; Volker Brendel; John K. VanDyk; Adam J. Bogdanove

Transcription activator-like (TAL) effectors are repeat-containing proteins used by plant pathogenic bacteria to manipulate host gene expression. Repeats are polymorphic and individually specify single nucleotides in the DNA target, with some degeneracy. A TAL effector-nucleotide binding code that links repeat type to specified nucleotide enables prediction of genomic binding sites for TAL effectors and customization of TAL effectors for use in DNA targeting, in particular as custom transcription factors for engineered gene regulation and as site-specific nucleases for genome editing. We have developed a suite of web-based tools called TAL Effector-Nucleotide Targeter 2.0 (TALE-NT 2.0; https://boglab.plp.iastate.edu/) that enables design of custom TAL effector repeat arrays for desired targets and prediction of TAL effector binding sites, ranked by likelihood, in a genome, promoterome or other sequence of interest. Search parameters can be set by the user to work with any TAL effector or TAL effector nuclease architecture. Applications range from designing highly specific DNA targeting tools and identifying potential off-target sites to predicting effector targets important in plant disease.


Science | 2012

The Crystal Structure of TAL Effector PthXo1 Bound to Its DNA Target.

Amanda Nga-Sze Mak; Philip Bradley; Raúl Andrés Cernadas; Adam J. Bogdanove; Barry L. Stoddard

Wrapped DNA TAL effectors are proteins that bacterial pathogens inject into plant cells that bind to host DNA to activate expression of plant genes. The DNA-binding domain of TAL proteins is composed of tandem repeats within which a repeat-variable diresidue sequence confers nucleotide specificity. Deng et al. (p. 720, published online 5 January) report the structure of the TAL effector dHax3, containing 11.5 repeats, in DNA-free and DNA-bound states, and Mak et al. (p. 716, published online 5 January) report the structure of the PthXo1 TAL effector, containing 22 repeats, bound to its DNA target. Together, the structures reveal the conformational changes involved in DNA binding and provide the structural basis of DNA recognition. Structures show how a virulence factor in a plant pathogen recognizes and binds to host DNA. DNA recognition by TAL effectors is mediated by tandem repeats, each 33 to 35 residues in length, that specify nucleotides via unique repeat-variable diresidues (RVDs). The crystal structure of PthXo1 bound to its DNA target was determined by high-throughput computational structure prediction and validated by heavy-atom derivatization. Each repeat forms a left-handed, two-helix bundle that presents an RVD-containing loop to the DNA. The repeats self-associate to form a right-handed superhelix wrapped around the DNA major groove. The first RVD residue forms a stabilizing contact with the protein backbone, while the second makes a base-specific contact to the DNA sense strand. Two degenerate amino-terminal repeats also interact with the DNA. Containing several RVDs and noncanonical associations, the structure illustrates the basis of TAL effector–DNA recognition.


Molecular Plant Pathology | 2006

Xanthomonas oryzae pathovars: model pathogens of a model crop.

David O. Niño-Liu; Pamela C. Ronald; Adam J. Bogdanove

SUMMARY Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola cause bacterial blight and bacterial leaf streak of rice (Oryza sativa), which constrain production of this staple crop in much of Asia and parts of Africa. Tremendous progress has been made in characterizing the diseases and breeding for resistance. X. oryzae pv. oryzae causes bacterial blight by invading the vascular tissue, while X. oryzae pv. oryzicola causes bacterial leaf streak by colonizing the parenchyma. In rice there are 29 major genes for resistance to bacterial blight, but so far only a few quantitative resistance loci for bacterial leaf streak. Over 30 races of X. oryzae pv. oryzae have been reported. Both pathogens exhibit genetic variation among isolates. Mechanisms of pathogenesis and resistance have begun to be elucidated. Members of the AvrBs3/PthA family of transcription activator-like effectors play a major role in the virulence of X. oryzae pv. oryzae and possibly X. oryzae pv. oryzicola. Cloning of six rice resistance genes for bacterial blight and one from maize effective against bacterial leaf streak has uncovered a diversity of structure and function, some shared by genes involved in defence in animals. This article reviews research that spans a century. It also presents a perspective on challenges for sustainable control, and opportunities that interactions of X. oryzae pathovars with rice present as models for understanding fundamental aspects of bacterial pathogenesis of plants and plant disease resistance, as well as other aspects of plant and microbial biology, with implications also for animal innate immunity.


Current Opinion in Plant Biology | 2010

TAL effectors: finding plant genes for disease and defense

Adam J. Bogdanove; Sebastian Schornack; Thomas Lahaye

Transcription activator like effectors (TALEs) are injected via the type III secretion pathway of many plant pathogenic Xanthomonas spp. into plant cells where they contribute to disease or trigger resistance by binding to DNA and turning on TALE-specific host genes. Advances in our understanding of TALEs and their targets have yielded new models for pathogen recognition and defense. Similarly, we have gained insight into plant molecules and processes that can be co-opted to promote infection. Recent elucidation of the basis for specificity in DNA binding by TALEs expedites further discovery and opens the door to biotechnological applications. This article reviews the most significant findings in TALE research, with a focus on recent advances, and discusses future prospects including pressing questions yet to be answered.


BMC Genomics | 2008

Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

Daniel D. Sommer; Michael C. Schatz; Adam M. Phillippy; Pablo D. Rabinowicz; Seiji Tsuge; Ayako Furutani; Hirokazu Ochiai; Arthur L. Delcher; David R. Kelley; Ramana Madupu; Daniela Puiu; Diana Radune; Martin Shumway; Cole Trapnell; Gudlur Aparna; Gopaljee Jha; Alok K. Pandey; Prabhu B. Patil; Hiromichi Ishihara; Damien Meyer; Boris Szurek; Valérie Verdier; Ralf Koebnik; J. Maxwell Dow; Robert P. Ryan; Hisae Hirata; Shinji Tsuyumu; Sang Won Lee; Pamela C. Ronald; Ramesh V. Sonti

Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.


Plant Physiology | 2013

Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering

Yong Zhang; Feng Zhang; Xiaohong Li; Joshua A. Baller; Yiping Qi; Colby G. Starker; Adam J. Bogdanove; Daniel F. Voytas

The ability to precisely engineer plant genomes offers much potential for advancing basic and applied plant biology. Here, we describe methods for the targeted modification of plant genomes using transcription activator-like effector nucleases (TALENs). Methods were optimized using tobacco (Nicotiana tabacum) protoplasts and TALENs targeting the acetolactate synthase (ALS) gene. Optimal TALEN scaffolds were identified using a protoplast-based single-strand annealing assay in which TALEN cleavage creates a functional yellow fluorescent protein gene, enabling quantification of TALEN activity by flow cytometry. Single-strand annealing activity data for TALENs with different scaffolds correlated highly with their activity at endogenous targets, as measured by high-throughput DNA sequencing of polymerase chain reaction products encompassing the TALEN recognition sites. TALENs introduced targeted mutations in ALS in 30% of transformed cells, and the frequencies of targeted gene insertion approximated 14%. These efficiencies made it possible to recover genome modifications without selection or enrichment regimes: 32% of tobacco calli generated from protoplasts transformed with TALEN-encoding constructs had TALEN-induced mutations in ALS, and of 16 calli characterized in detail, all had mutations in one allele each of the duplicate ALS genes (SurA and SurB). In calli derived from cells treated with a TALEN and a 322-bp donor molecule differing by 6 bp from the ALS coding sequence, 4% showed evidence of targeted gene replacement. The optimized reagents implemented in plant protoplasts should be useful for targeted modification of cells from diverse plant species and using a variety of means for reagent delivery.

Collaboration


Dive into the Adam J. Bogdanove's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prabhu B. Patil

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger P. Wise

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge