Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam J. Guess is active.

Publication


Featured researches published by Adam J. Guess.


American Journal of Physiology-renal Physiology | 2010

Dose- and time-dependent glucocorticoid receptor signaling in podocytes

Adam J. Guess; Shipra Agrawal; Chang-Ching Wei; Richard F. Ransom; Rainer Benndorf; William E. Smoyer

Glucocorticoids (GC) are the primary therapy for idiopathic nephrotic syndrome (NS). Recent evidence has identified glomerular podocytes as a potential site of GC action in this disease. The objectives of this study were to determine the presence of key components of the glucocorticoid receptor (GR) complex and the functionality of this signaling pathway in podocytes and to explore potential opportunities for manipulation of GC responsiveness. Here, we show that cultured murine podocytes express key components of the GR complex, including the GR, heat shock protein 90, and the immunophilins FKBP51 and FKBP52. The functionality of GR-mediated signaling was verified by measuring several GC (dexamethasone)-induced responses, including 1) increases in mRNA and protein levels of selected GC-regulated genes (FKBP51, phenol sulfotransferase 1, αB-crystallin); 2) downregulation of the GR protein; 3) increased phosphorylation of the GR; and 4) translocation of the GR into the nuclear fraction. Dexamethasone-induced phosphorylation and downregulation of GR protein were also demonstrated in isolated rat glomeruli. Podocyte gene expression in response to dexamethasone was regulated at both the transcriptional and posttranscriptional levels, the latter also including protein degradation. Short-term, high-dose GC treatment resulted in similar changes in gene expression and GR phosphorylation to that of long-term, low-dose GC treatment, thus providing a molecular rationale for the known efficacy of pulse GC therapy in NS. Induction of FKBP51 and downregulation of the GR represent negative feedback mechanisms that can potentially be exploited to improve clinical GC efficacy. Collectively, these findings demonstrate the presence of key molecular components of the GR signaling pathway and its functionality in podocytes and identify novel opportunities for improving clinical GC efficacy in the treatment of NS.


Kidney International | 2014

Albumin-induced podocyte injury and protection are associated with regulation of COX-2.

Shipra Agrawal; Adam J. Guess; Melinda A. Chanley; William E. Smoyer

Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids.


Molecular Pharmacology | 2011

Comparison of Direct Action of Thiazolidinediones and Glucocorticoids on Renal Podocytes: Protection from Injury and Molecular Effects

Shipra Agrawal; Adam J. Guess; Rainer Benndorf; William E. Smoyer

The U.S. Food and Drug Administration-approved thiazolidinediones pioglitazone and rosiglitazone are peroxisome proliferator-activated receptor-γ (PPARγ) agonists developed to control serum glucose in patients with diabetes. They have been found to reduce proteinuria and microalbuminuria in both diabetic nephropathy and nondiabetic glomerulosclerosis. We hypothesized that the renal protective effects of thiazolidinediones result, at least in part, from their direct action on podocytes, similar to glucocorticoids. Treatment with pioglitazone, rosiglitazone, or dexamethasone significantly protected podocytes against puromycin aminonucleoside-induced injury (designed to mimic nephrotic syndrome-related injury), as determined by both cell survival and actin cytoskeletal integrity. Furthermore, we compared the ability of these drugs to modulate key signaling pathways in podocytes that may be critical to their protective effects. Rosiglitazone deactivated the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1/2, p38 MAPK, and stress-activated protein kinase/c-Jun NH2-terminal kinase, whereas pioglitazone did not, and dexamethasone deactivated to some extent. Similar to dexamethasone, both thiazolidinediones increased the glucocorticoid receptor phosphorylation, and this response to rosiglitazone and possibly to pioglitazone was PPARγ-dependent. Furthermore, both drugs mimicked or enhanced the effects of dexamethasone on glucocorticoid-responsive genes in a PPARγ- and glucocorticoid receptor-dependent manner. In addition, both thiazolidinediones mimicked dexamethasone-induced effects on calcineurin activity. In summary, thiazolidinediones are able to modulate the glucocorticoid pathway and exert direct protective effects on podocytes, similar to glucocorticoids. This suggests that thiazolidinediones may have potential clinical utility as either primary or adjunctive therapy for nephrotic syndrome or other diseases treated with glucocorticoids. These findings may also lend mechanistic insight into the well established but poorly understood renal protective effects of thiazolidinediones in diabetic nephropathy.


American Journal of Physiology-renal Physiology | 2011

Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury

Ruma Pengal; Adam J. Guess; Shipra Agrawal; Joshua Manley; Richard F. Ransom; Robert J. Mourey; Rainer Benndorf; William E. Smoyer

While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases.


PLOS ONE | 2013

Crucial Roles of the Protein Kinases MK2 and MK3 in a Mouse Model of Glomerulonephritis

Adam J. Guess; Rose Ayoob; Melinda A. Chanley; Joshua Manley; Mariana M. Cajaiba; Shipra Agrawal; Ruma Pengal; Amy L. Pyle; Brian Becknell; Jeffrey B. Kopp; Natalia Ronkina; Matthias Gaestel; Rainer Benndorf; William E. Smoyer

Elevated mitogen-activated protein kinase p38 (p38 MAPK) signaling has been implicated in various experimental and human glomerulopathies, and its inhibition has proven beneficial in animal models of these diseases. p38 MAPK signaling is partially mediated through MK2 and MK3, two phylogenetically related protein kinases that are its direct substrates. The current study was designed to determine the specific roles of MK2 and MK3 in a mouse model of acute proliferative glomerulonephritis, using mice with disrupted MK2 and/or MK3 genes. We found that the absence of MK3 alone worsened the disease course and increased mortality slightly compared to wild-type mice, whereas the absence of MK2 alone exhibited no significant effect. However, in an MK3-free background, the disease course depended on the presence of MK2 in a gene dosage-dependent manner, with double knock-out mice being most susceptible to disease induction. Histological and renal functional analyses confirmed kidney damage following disease induction. Because the renal stress response plays a crucial role in kidney physiology and disease, we analyzed the stress response pattern in this disease model. We found that renal cortices of diseased mice exhibited a pronounced and specific pattern of expression and/or phosphorylation of stress proteins and other indicators of the stress response (HSPB1, HSPB6, HSPB8, CHOP, eIF2α), partially in a MK2/MK3 genotype-specific manner, and without induction of a general stress response. Similarly, the expression and activation patterns of other protein kinases downstream of p38 MAPK (MNK1, MSK1) depended partially on the MK2/MK3 genotype in this disease model. In conclusion, MK2 and MK3 together play crucial roles in the regulation of the renal stress response and in the development of glomerulonephritis, which can potentially be exploited to develop novel therapeutic approaches to treat glomerular disease.


Bone | 2017

Hematopoietic derived cells do not contribute to osteogenesis as osteoblasts

Satoru Otsuru; Kathleen M. Overholt; Timothy S. Olson; Ted J. Hofmann; Adam J. Guess; Victoria M. Velazquez; Takashi Kaito; Massimo Dominici; Edwin M. Horwitz

Despite years of extensive investigation, the cellular origin of heterotopic ossification (HO) has not been fully elucidated. We have previously shown that circulating bone marrow-derived osteoblast progenitor cells, characterized by the immunophenotype CD45-/CD44+/CXCR4+, contributed to the formation of heterotopic bone induced by bone morphogenetic protein (BMP)-2. In contrast, other reports have demonstrated the contribution of CD45+ hematopoietic derived cells to HO. Therefore, in this study, we developed a novel triple transgenic mouse strain that allows us to visualize CD45+ cells with red fluorescence and mature osteoblasts with green fluorescence. These mice were generated by crossing CD45-Cre mice with Z/RED mice that express DsRed, a variant of red fluorescent protein, after Cre-mediated recombination, and then crossing with Col2.3GFP mice that express green fluorescent protein (GFP) in mature osteoblasts. Utilizing this model, we were able to investigate if hematopoietic derived cells have the potential to give rise to mature osteoblasts. Analyses of this triple transgenic mouse model demonstrated that DsRed and GFP did not co-localize in either normal skeletogenesis, bone regeneration after fracture, or HO. This indicates that in these conditions hematopoietic derived cells do not differentiate into mature osteoblasts. Interestingly, we observed the presence of previously unidentified DsRed positive bone lining cells (red BLCs) which are derived from hematopoietic cells but lack CD45 expression. These red BLCs fail to produce GFP even under in vitro osteogenic conditions. These findings indicate that, even though both osteoblasts and hematopoietic cells are developmentally derived from mesoderm, hematopoietic derived cells do not contribute to osteogenesis in fracture healing or HO.


Stem Cells | 2018

Intratumoral Delivery of Interferonγ‐Secreting Mesenchymal Stromal Cells Repolarizes Tumor‐Associated Macrophages and Suppresses Neuroblastoma Proliferation In Vivo

Theresa Relation; Tai Yi; Adam J. Guess; Krista La Perle; Satoru Otsuru; Suheyla Hasgur; Massimo Dominici; Christopher K. Breuer; Edwin M. Horwitz

Neuroblastoma, the most common extracranial solid tumor in childhood, remains a therapeutic challenge. However, one promising patient treatment strategy is the delivery of anti‐tumor therapeutic agents via mesenchymal stromal cell (MSC) therapy. MSCs have been safely used to treat genetic bone diseases such as osteogenesis imperfecta, cardiovascular diseases, autoimmune diseases, and cancer. The pro‐inflammatory cytokine interferon‐gamma (IFNγ) has been shown to decrease tumor proliferation by altering the tumor microenvironment (TME). Despite this, clinical trials of systemic IFNγ therapy have failed due to the high blood concentration required and associated systemic toxicities. Here, we developed an intra‐adrenal model of neuroblastoma, characterized by liver and lung metastases. We then engineered MSCs to deliver IFNγ directly to the TME. In vitro, these MSCs polarized murine macrophages to the M1 phenotype. In vivo, we attained a therapeutically active TME concentration of IFNγ without increased systemic concentration or toxicity. The TME‐specific IFNγ reduced tumor growth rate and increased survival in two models of T cell deficient athymic nude mice. Absence of this benefit in NOD SCID gamma (NSG) immunodeficient mouse model indicates a mechanism dependent on the innate immune system. IL‐17 and IL‐23p19, both uniquely M1 polarization markers, transiently increased in the tumor interstitial fluid. Finally, the MSC vehicle did not promote tumor growth. These findings reveal that MSCs can deliver effective cytokine therapy directly to the tumor while avoiding systemic toxicity. This method transiently induces inflammatory M1 macrophage polarization, which reduces tumor burden in our novel neuroblastoma murine model. Stem Cells 2018;36:915–924


Stem Cells Translational Medicine | 2017

Safety Profile of Good Manufacturing Practice Manufactured Interferon γ‐Primed Mesenchymal Stem/Stromal Cells for Clinical Trials

Adam J. Guess; Beth Daneault; Rongzhang Wang; Hillary Bradbury; Krista La Perle; James Fitch; Sheri L. Hedrick; Elizabeth Hamelberg; Caroline Astbury; Peter White; Kathleen Overolt; Hemalatha G. Rangarajan; Rolla Abu-Arja; Steven M. Devine; Satoru Otsuru; Massimo Dominici; Lynn O'Donnell; Edwin M. Horwitz

Mesenchymal stem/stromal cells (MSCs) are widely studied by both academia and industry for a broad array of clinical indications. The collective body of data provides compelling evidence of the clinical safety of MSC therapy. However, generally accepted proof of therapeutic efficacy has not yet been reported. In an effort to generate a more effective therapeutic cell product, investigators are focused on modifying MSC processing protocols to enhance the intrinsic biologic activity. Here, we report a Good Manufacturing Practice‐compliant two‐step MSC manufacturing protocol to generate MSCs or interferon γ (IFNγ) primed MSCs which allows freshly expanded cells to be infused in patients on a predetermined schedule. This protocol eliminates the need to infuse cryopreserved, just thawed cells which may reduce the immune modulatory activity. Moreover, using (IFNγ) as a prototypic cytokine, we demonstrate the feasibility of priming the cells with any biologic agent. We then characterized MSCs and IFNγ primed MSCs prepared with our protocol, by karyotype, in vitro potential for malignant transformation, biodistribution, effect on engraftment of transplanted hematopoietic cells, and in vivo toxicity in immune deficient mice including a complete post‐mortem examination. We found no evidence of toxicity attributable to the MSC or IFNγ primed MSCs. Our data suggest that the clinical risk of infusing MSCs or IFNγ primed MSCs produced by our two‐step protocol is not greater than MSCs currently in practice. While actual proof of safety requires phase I clinical trials, our data support the use of either cell product in new clinical studies. Stem Cells Translational Medicine 2017;6:1868–1879


Cytotherapy | 2018

Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta

Satoru Otsuru; Laura Desbourdes; Adam J. Guess; Ted J. Hofmann; Theresa Relation; Takashi Kaito; Massimo Dominici; Masahiro Iwamoto; Edwin M. Horwitz

BACKGROUND Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity. METHODS To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs. RESULTS We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation. CONCLUSION MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.


Biochemical and Biophysical Research Communications | 2018

Apolipoprotein E plays crucial roles in maintaining bone mass by promoting osteoblast differentiation via ERK1/2 pathway and by suppressing osteoclast differentiation via c-Fos, NFATc1, and NF-κB pathway

Takaaki Noguchi; Kosuke Ebina; Makoto Hirao; Satoru Otsuru; Adam J. Guess; Ryota Kawase; Tohru Ohama; Shizuya Yamashita; Yuki Etani; Gensuke Okamura; Hideki Yoshikawa

Apolipoprotein E (ApoE) plays crucial roles not only in lipid metabolism but also in bone metabolism. Specifically ApoE4, one of major ApoE isoforms, has been demonstrated to be associated with increased risk of developing osteoporosis compared to another major isoform ApoE3. However, the detailed mechanism of how the different ApoE isoforms affect bone metabolism remains unclear. Micro-CT analyses of distal femora demonstrated severely decreased bone mass in 48-week-old female homozygous ApoE-knockout (ApoE-KO) mice compared to age- and gender-matched wild type C57BL/6 J (WT) mice. Physiological levels of either ApoE3 or ApoE4 protein (1-20 μg/ml) significantly increased the expression of osteoblast-related genes and alkaline phosphatase (ALP) activity of primary calvarial osteoblasts by inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in a dose-dependent manner, and ApoE3 showed greater osteoblastic induction compared to ApoE4. Furthermore, both ApoE3 and ApoE4 protein inhibited osteoclastogenesis and the expression of osteoclast-related genes of mouse bone marrow derived macrophages (BMDM) via down regulation of c-Fos, nuclear factor of activated T-cells 1 (NFATc1) and nuclear factor-kappa B (NF-κB) pathway. Moreover, ApoE3 showed greater inhibition of c-Fos, dendritic cell-specific transmembrane protein (DC-STAMP), and Cathepsin K gene expression compared to ApoE4. Collectively, ApoE plays crucial roles in preserving bone mass, suggesting that targeting ApoE and its isoforms as a promising treatment candidate of both osteoporosis and hyperlipidemia.

Collaboration


Dive into the Adam J. Guess's collaboration.

Top Co-Authors

Avatar

Satoru Otsuru

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Edwin M. Horwitz

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Massimo Dominici

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Shipra Agrawal

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy S. Olson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Overholt

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ted J. Hofmann

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Theresa Relation

The Research Institute at Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge