Adam J. Sadowski
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam J. Sadowski.
Journal of Environmental Management | 2009
Miklas Scholz; Adam J. Sadowski
The aim of this paper is to recommend a rapid conceptual classification model for Sustainable Flood Retention Basins (SFRB) used to control runoff in a temperate climate. An SFRB is an aesthetically pleasing retention basin predominantly used for flood protection adhering to sustainable drainage and best management practices. The classification model was developed on the basis of a database of 141 SFRB using the River Rhine catchment in Baden (part of Baden-Württemberg, Germany) as a case study. It is based on an agglomerative cluster analysis and is intended to be used by engineers and scientists to adequately classify the following different types of SFRB: Hydraulic Flood Retention Basin, Traditional Flood Retention Basin, Sustainable Flood Retention Wetland, Aesthetic Flood Retention Wetland, Integrated Flood Retention Wetland and Natural Flood Retention Wetland. The selection of classification variables was supported by a principal component analysis. The identification of SFRB in the data set was based on a Ward cluster analysis of 34 weighted classification variables. Scoring tables were defined to enable the assignment of the six SFRB definitions to retention basins in the data set. The efficiency of these tables was based on a scoring system which gave the conceptual model for the example case study sites an overall efficiency of approximately 60% (as opposed to 17% by chance). This conceptual classification model should be utilized to improve communication by providing definitions for SFRB types. The classification definitions are likely to be applicable for other regions with both temperate oceanic and temperate continental climates.
Journal of Engineering Mechanics-asce | 2010
Adam J. Sadowski; J. Michael Rotter
The most serious loading condition for slender thin-walled metal silos has long been recognized to be the condition of discharge, with eccentric discharge causing more catastrophic failures than any other. Two key reasons for this high failure rate are the difficulties in characterizing the pressure distribution caused by eccentric solids flow, and in understanding the associated unsymmetrical stresses in the silo wall. Few studies have addressed either the linear elastic behavior of such a silo or its buckling failure under eccentric discharge. In this study, the eccentric discharge pressures are characterized using the new rules of the European Standard EN 1991-4 on Silos and Tanks. This novel description of unsymmetrical pressures permits a study of the structural behavior leading to buckling during eccentric discharge, including the critical effects of change of geometry and imperfection sensitivity, to be undertaken using geometrically and materially nonlinear computational analyses. The mechanics of...
Advances in Engineering Software | 2017
Adam J. Sadowski; O. Kunle Fajuyitan; Jie Wang
Approved EN RRD design method for metal shells exploits advanced FE analyses.Challenge is now to establish databases of RRD parameters for important shell systems.RRD parameters require vast parametric studies of thousands of nonlinear FEA.Tools given for automated model generation, submission, termination and processing.Automated termination of Riks analyses upon multiple failure criteria for shells. The new Reference Resistance Design (RRD) method, recently developed by Rotter [1], for the manual dimensioning of metal shell structures effectively permits an analyst working with only a calculator or spreadsheet to take full advantage of the realism and accuracy of an advanced nonlinear finite element (FE) calculation. The method achieves this by reformulating the outcomes of a vast programme of parametric FE calculations in terms of six algebraic parameters and two resistances, each representing a physical aspect of the shells behaviour.The formidable challenge now is to establish these parameters and resistances for the most important shell geometries and load cases. The systems that have received by far the most research attention for RRD are that of a cylindrical shell under uniform axial compression and uniform bending. Their partial algebraic characterisations required thousands of finite element calculations to be performed across a four-dimensional parameter hyperspace (i.e. length, radius to thickness ratio, imperfection amplitude, linear strain hardening modulus).Handling so many nonlinear finite element models is time-consuming and the quantities of data generated can be overwhelming. This paper illustrates a computational strategy to deal with both issues that may help researchers establish sets of RRD parameters for other important shell systems with greater confidence and accuracy. The methodology involves full automation of model generation, submission, termination and processing with object-oriented scripting, illustrated using code and pseudocode fragments.
Journal of Structural Engineering-asce | 2012
Adam J. Sadowski; J. Michael Rotter
AbstractThe condition of eccentric discharge is known to be one of the most critical for the design of thin-walled cylindrical metal silos. Significant progress has been made in recent years in devising a relatively realistic set of representative pressures for this load case. However, the consequences these may have on the predicted structural behavior of a silo are not yet fully understood. This paper presents a detailed parametric study into the behavior of a custom-designed slender silo under a set of unsymmetrical pressures describing the action of an eccentric parallel-sided pipe flow channel of varying cross-sectional areas. The results are compared with the reference axisymmetric case of concentric discharge. It is found that the predicted behavior is very complex indeed, and that geometric nonlinearity is of much greater significance for cylindrical shells under unsymmetrical load patterns than under symmetrical patterns. Further, it is found that eigenmode-affine imperfections, which are very de...
Journal of Engineering Mechanics-asce | 2013
Adam J. Sadowski; J. Michael Rotter
AbstractEccentric discharge in slender metal silos is known to be one of the most critical load conditions, responsible for many silo buckling disasters in the past. The high failure rate may be significantly attributed to difficulties in devising a suitable wall pressure representation for this condition. Where the flow of stored solids is eccentric and has partial contact with the wall in a slender silo, the solid exerts much lower pressures than the adjacent stationary solid. This pressure drop leads to very high local axial compression and causes buckling failure. Experimentally measured pressures indicate that a significant rise in pressure may occur just outside the flow channel, but its form and magnitude are not yet well understood because very detailed and expensive instrumentation is needed to obtain data that can define it. This paper explores the nonlinear structural behavior and buckling of a slender metal silo with and without specific inclusion of an adjacent rise in pressure, to determine ...
Advances in Structural Engineering | 2018
O. Kunle Fajuyitan; Adam J. Sadowski
Efforts are ongoing to characterise a comprehensive resistance function for cylindrical shells under uniform bending, a ubiquitous structural system that finds application in load-bearing circular hollow sections, tubes, piles, pipelines, wind turbine support towers, chimneys and silos. A recent computational study by Rotter et al. demonstrated that nonlinear buckling of perfect elastic cylinders under bending is governed by four length-dependent domains –‘short’, ‘medium’, ‘transitional’ and ‘long’– depending on the relative influence of end boundary conditions and cross-sectional ovalisation. The study additionally transformed its resistance predictions into compact algebraic relationships for use as design equations within the recently developed framework of reference resistance design. This article extends on the above to present a detailed computational investigation into the imperfection sensitivity of thin elastic cylindrical shells across the most important length domains, using automation to carry out the vast number of necessary finite element analyses. Geometric imperfections in three forms – the classical linear buckling eigenmode, an imposed cross-sectional ovalisation and a realistic manufacturing ‘weld depression’ defect – are applied to demonstrate that imperfection sensitivity is strongly length dependent but significantly less severe than for the closely related load case of cylinders under uniform axial compression. The axisymmetric weld depression almost always controls as the most deleterious imperfection. The data are processed computationally to offer an accurate yet conservative lower-bound algebraic design characterisation of imperfection sensitivity for use within the RRD framework. The outcomes are relevant to researchers and designers of large metal shells under bending and will appeal to computational enthusiasts who are encouraged to adopt the automation methodology described herein to explore other structural systems.
International Journal of Mechanical Sciences | 2013
Adam J. Sadowski; J. Michael Rotter
Journal of Constructional Steel Research | 2011
Adam J. Sadowski; J. M. Rotter
Engineering Structures | 2011
Adam J. Sadowski; J. Michael Rotter
International Journal of Solids and Structures | 2014
J. Michael Rotter; Adam J. Sadowski; Lei Chen