Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Jerry Varenhorst is active.

Publication


Featured researches published by Adam Jerry Varenhorst.


Environmental Entomology | 2012

The Response of Natural Enemies to Selective Insecticides Applied to Soybean

Adam Jerry Varenhorst; Matthew E. O'Neal

ABSTRACT Natural enemies of the invasive pest Aphis glycines Matsumura can prevent its establishment and population growth. However, current A. glycines management practices include the application of broad-spectrum insecticides that affect pests and natural enemies that are present in the field at the time of application. An alternative is the use of selective insecticides that affect the targeted pest species, although having a reduced impact on the natural enemies. We tested the effects of esfenvalerate, spirotetramat, imidacloprid, and a combination of spirotetramat and imidacloprid on the natural enemies in soybean during the 2009 and 2010 field season. The natural enemy community that was tested differed significantly between 2009 and 2010 (F = 87.41; df = 1, 598; P < 0.0001). The most abundant natural enemy in 2009 was Harmonia axyridis (Pallas) (56.0%) and in 2010 was Orius insidiosus (Say) (41.0%). During 2009, the abundance of natural enemies did not vary between the broad-spectrum and selective insecticides; however, the abundance of natural enemies was reduced by all insecticide treatments when compared with the untreated control. In 2010, the selective insecticide imidacloprid had more natural enemies than the broad-spectrum insecticide. Although we did not observe a difference in the abundance of the total natural enemy community in 2009, we did observe more H. axyridis in plots treated with spirotetramat. In 2010, we observed more O. insidiosus in plots treated with imidacloprid. We suggest a couple of mechanisms to explain how the varying insecticides have different impacts on separate components of the natural enemy community.


Environmental Entomology | 2015

An Induced Susceptibility Response in Soybean Promotes Avirulent Aphis glycines (Hemiptera: Aphididae) Populations on Resistant Soybean

Adam Jerry Varenhorst; Michael T. McCarville; Matthew E. O'Neal

ABSTRACT Observations of virulent Aphis glycines Matsumura populations on resistant soybean in North America occurred prior to the commercial release of Rag genes. Laboratory assays confirmed the presence of four A. glycines biotypes in North America defined by their virulence to the Rag1 and Rag2 genes. Avirulent and virulent biotypes can co-occur and potentially interact on soybean, which may result in induced susceptibility. We conducted a series of experiments to determine if the survival of avirulent biotypes on susceptible and resistant soybean containing the Rag1 or Rag1 + Rag2 genes was affected by the presence of either avirulent or virulent conspecifics. Regardless of virulence to Rag genes, initial feeding by conspecifics increased the survival of subsequent A. glycines populations on both susceptible and resistant soybean. Avirulent populations increased at the same rate as virulent populations if the resistant plants were initially colonized with virulent aphids. These results are the first to demonstrate that virulent A. glycines increase the suitability of resistant soybean for avirulent conspecifics, thus explaining the lack of genetic differentiation observed in North America between A. glycines populations on resistant and susceptible soybean. These results suggest the occurrence of virulence toward Rag genes in North America may be overestimated. In addition this may alter the selection pressure for virulence genes to increase in a population. Therefore, insect resistance management models for A. glycines may need to incorporate induced susceptibility factors to determine the relative durability of resistance genes.


PLOS ONE | 2015

Reduced Fitness of Virulent Aphis glycines (Hemiptera: Aphididae) Biotypes May Influence the Longevity of Resistance Genes in Soybean

Adam Jerry Varenhorst; Michael T. McCarville; Matthew E. O’Neal

Sustainable use of insect resistance in crops require insect resistance management plans that may include a refuge to limit the spread of virulence to this resistance. However, without a loss of fitness associated with virulence, a refuge may not prevent virulence from becoming fixed within a population of parthenogenetically reproducing insects like aphids. Aphid-resistance in soybeans (i.e., Rag genes) prevent outbreaks of soybean aphid (Aphis glycines), yet four biotypes defined by their capacity to survive on aphid-resistant soybeans (e.g., biotype-2 survives on Rag1 soybean) are found in North America. Although fitness costs are reported for biotype-3 on aphid susceptible and Rag1 soybean, it is not clear if virulence to aphid resistance in general is associated with a decrease in fitness on aphid susceptible soybeans. In laboratory assays, we measured fitness costs for biotype 2, 3 and 4 on an aphid-susceptible soybean cultivar. In addition, we also observed negative cross-resistance for biotype-2 on Rag3, and biotype-3 on Rag1 soybean. We utilized a simple deterministic, single-locus, four compartment genetic model to account for the impact of these findings on the frequency of virulence alleles. When a refuge of aphid susceptible was included within this model, fitness costs and negative cross-resistance delayed the increase of virulence alleles when virulence was inherited recessively or additively. If virulence were inherited additively, fitness costs decreased the frequency of virulence. Combined, these results suggest that a refuge may prevent virulent A. glycines biotypes from overcoming Rag genes if this aphid-resistance were used commercially in North America.


Biochemical Genetics | 2018

Evolutionary Divergence of TNL Disease-Resistant Proteins in Soybean (Glycine max) and Common Bean (Phaseolus vulgaris)

Surendra Neupane; Qin Ma; Febina M. Mathew; Adam Jerry Varenhorst; Ethan J. Andersen; Madhav P. Nepal

Disease-resistant genes (R genes) encode proteins that are involved in protecting plants from their pathogens and pests. Availability of complete genome sequences from soybean and common bean allowed us to perform a genome-wide identification and analysis of the Toll interleukin-1 receptor-like nucleotide-binding site leucine-rich repeat (TNL) proteins. Hidden Markov model (HMM) profiling of all protein sequences resulted in the identification of 117 and 77 regular TNL genes in soybean and common bean, respectively. We also identified TNL gene homologs with unique domains, and signal peptides as well as nuclear localization signals. The TNL genes in soybean formed 28 clusters located on 10 of the 20 chromosomes, with the majority found on chromosome 3, 6 and 16. Similarly, the TNL genes in common bean formed 14 clusters located on five of the 11 chromosomes, with the majority found on chromosome 10. Phylogenetic analyses of the TNL genes from Arabidopsis, soybean and common bean revealed less divergence within legumes relative to the divergence between legumes and Arabidopsis. Syntenic blocks were found between chromosomes Pv10 and Gm03, Pv07 and Gm10, as well as Pv01 and Gm14. The gene expression data revealed basal level expression and tissue specificity, while analysis of available microRNA data showed 37 predicted microRNA families involved in targeting the identified TNL genes in soybean and common bean.


Journal of Economic Entomology | 2017

Determining the Effectiveness of Three-Gene Pyramids Against Aphis glycines (Hemiptera: Aphididae) Biotypes

Adam Jerry Varenhorst; S R Pritchard; M E O’Neal; Erin W. Hodgson; A K Singh

Abstract Since the discovery of Aphis glycines Matsumura (Hemiptera: Aphididae) in the United States, the primary management tactic has been foliar insecticides. Alternative management options such as host plant resistance to A. glycines have been developed and their effectiveness proved. However, the use of host plant resistance was complicated by the discovery of multiple, virulent biotypes of A. glycines in the United States that are capable of overcoming single Rag genes, Rag1 and Rag2, as well as a two-gene pyramid of Rag1+Rag2. However, current models predict that the virulent allele frequency of A. glycines decreases in response to the use of pyramided Rag genes, suggesting that pyramids represent a more sustainable use of these traits. Previous research has demonstrated that virulent biotypes can be effectively managed using a three-gene pyramid of Rag1+Rag2+Rag3. Additional Rag-genes have been discovered (Rag4 and Rag5), but whether the incorporation of these genes into novel three-gene pyramids will improve efficacy is not known. We tested single-gene (Rag1 and Rag2) and pyramid cultivars (Rag1+Rag2, Rag1+Rag2+Rag3, Rag1+Rag2+Rag4) to multiple biotypes in laboratory assays. Our results confirm that the Rag1+Rag2+Rag3 pyramid effectively manages all known A. glycines biotypes when compared with cultivars that are overcome by the associated biotype. Our results indicate that Rag1+Rag2+Rag4 would be an effective management option for biotype-1, biotype-2, and biotype-3 A. glycines, but had a negligible impact on biotype-4.


Journal of Economic Entomology | 2016

The Effect of an Interspersed Refuge on Aphis glycines (Hemiptera: Aphididae), Their Natural Enemies, and Biological Control

Adam Jerry Varenhorst; Matthew E. O'Neal

Abstract Soybean production in the north central United States has relied heavily on the use of foliar and seed applied insecticides to manage Aphis glycines (Hemiptera: Aphididae). An additional management strategy is the use soybean cultivars containing A. glycines resistance genes (Rag). Previous research has demonstrated that Rag cultivars are capable of preventing yield loss equivalent to the use of foliar and seed-applied insecticides. However, the presence of virulent biotypes in North America has raised concern for the durability of Rag genes. A resistance management program that includes a refuge for avirulent biotypes could limit the frequency at which virulent biotypes increase within North America. To what extent such a refuge reduces the effectiveness of aphid-resistant soybean is not clear. We conducted an experiment to determine whether a susceptible refuge mixed into resistant soybean (i.e., interspersed refuge or refuge-in-a-bag) affects the seasonal exposure of aphids, their natural enemies, biological control, and yield protection provided by aphid resistance. We compared three ratios of interspersed refuges (resistant: susceptible; 95:5, 90:10, 75:25) to plots grown with 100% susceptible or resistant soybean. We determined that an interspersed refuge of at least 25% susceptible seed would be necessary to effectively produce avirulent individuals. Interspersed refuges had negligible effects on yield and the natural enemy community. However, there was evidence that they increased the amount of biological control that occurred within a plot. We discuss the compatibility of interspersed refuges for A. glycines management and whether resistance management can prolong the durability of Rag genes.


Journal of Medical Entomology | 2018

Reduced Insecticide Susceptibility in Aedes vexans (Diptera: Culicidae) Where Agricultural Pest Management Overlaps With Mosquito Abatement

Mike W Dunbar; Amanda C. Bachmann; Adam Jerry Varenhorst

Abstract Mosquito abatement programs in Midwestern communities frequently exist within landscapes dominated by agriculture. Although separately managed, both agricultural pests and mosquitoes are targeted by similar classes of insecticides. As a result, there is the potential for unintended insecticide exposure to mosquito populations from agricultural pest management. To determine the impact that agricultural management practices have on mosquito insecticide susceptibility we compared the mortality of Aedes vexans (Meigen; Diptera: Culicidae) between populations sampled from locations with and without mosquito abatement in South Dakota, a region dominated by agricultural production. Collection locations were either within towns with mosquito abatement programs (n = 2; Brookings and Sioux Falls, SD) or located > 16 km from towns with mosquito abatement programs (n = 2; areas near Harrold and Willow Lake, SD). WHO bioassays were used to test susceptibly of adults to differing insecticide classes relative to their respective controls; 1) an organochlorine (dieldrin 4%), 2) an organophosphate (malathion 5%), and 3) a pyrethroid (lambda-cyhalothrin 0.05%). Corrected mortality did not significantly differ between locations with or without abatement; however, when locations were analized by proportion of developed land within the surrounding landscape pyrethroid mortality was significantly lower where crop production dominated the surrounding landscape and mosquito abatement was present. These data suggest that agricultural pest management may incidentally contribute to reduced mosquito susceptibility where overlap between agricultural pest management and mosquito abatement exists. Decoupling insecticide classes used by both agricultural and public health pest management programs may be necessary to ensure continued efficacy of pest management tools.


Journal of Economic Entomology | 2018

Native Solitary Bees Provide Economically Significant Pollination Services to Confection Sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) Grown Across the Northern Great Plains

Rachel Mallinger; Jeff Bradshaw; Adam Jerry Varenhorst; Jarrad R. Prasifka

Abstract The benefits of insect pollination to crop yields depend on genetic and environmental factors including plant self-fertility, pollinator visitation rates, and pollinator efficacy. While many crops benefit from insect pollination, such variation in pollinator benefits across both plant cultivars and growing regions is not well documented. In this study, across three states in the northern Great Plains, United States, from 2016 to 2017, we evaluated the pollinator-mediated yield increases for 10 varieties of confection sunflowers, Helianthus annuus L. (Asterales: Asteraceae), a plant that is naturally pollinator-dependent but was bred for self-fertility. We additionally measured pollinator visitation rates and compared per-visit seed set across pollinator taxa in order to determine the most efficacious sunflower pollinators. Across all locations and hybrids, insect pollination increased sunflower yields by 45%, which is a regional economic value of over


Arthropod-plant Interactions | 2015

Determining the duration of Aphis glycines (Hemiptera: Aphididae) induced susceptibility effect in soybean

Adam Jerry Varenhorst; Michael T. McCarville; Matthew E. O’Neal

40 million and a national value of over


Plant Health Progress | 2016

Biology and Economics of Recommendations for Insecticide-Based Management of Soybean Aphid

Robert L. Koch; Bruce D. Potter; Phillip Glogoza; Erin W. Hodgson; Christian H. Krupke; John F. Tooker; Christina DiFonzo; Andrew P. Michel; Kelley J. Tilmon; Travis J. Prochaska; Janet J. Knodel; Robert J. Wright; Thomas E. Hunt; Bryan Jensen; Adam Jerry Varenhorst; B. P. McCornack; Kelly A. Estes; Joseph L. Spencer

56 million.There was, however, some variation in the extent of pollinator benefits across locations and plant genotypes, and such variation was significantly related to pollinator visitation rates, further highlighting the value of pollinators for confection sunflowers. Female Andrena helianthi Robertson (Hymenoptera: Andrenidae) and Melissodes spp. (Hymenoptera: Apidae) were the most common and effective pollinators, while other bees including managed honey bees (Hymenoptera: Halictidae), Apis mellifera L. (Hymenoptera: Apidae), small-bodied sweat bees (Hymenoptera: Halictidae), bumble bees Bombus spp. (Hymenoptera: Apidae), and male bees were either infrequent or less effective on a per-visit basis. Our results illustrate that wild bees, in particular the sunflower specialists A. helianthi and Melissodes spp., provide significant economic benefits to confection sunflower production.

Collaboration


Dive into the Adam Jerry Varenhorst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet J. Knodel

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda C. Bachmann

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Andrew P. Michel

Ohio Agricultural Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge