Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam L. Heuberger is active.

Publication


Featured researches published by Adam L. Heuberger.


PLOS ONE | 2013

Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients and Healthy Adults

Tiffany L. Weir; Daniel K. Manter; Amy M. Sheflin; Brittany Barnett; Adam L. Heuberger; Elizabeth P. Ryan

In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated “omics” approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.


PLOS ONE | 2010

Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

Adam L. Heuberger; Matthew R. Lewis; Ming-Hsuan Chen; Mark A. Brick; Jan E. Leach; Elizabeth P. Ryan

Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health.


Journal of Agricultural and Food Chemistry | 2011

Rice Bran Fermented with Saccharomyces boulardii Generates Novel Metabolite Profiles with Bioactivity

Elizabeth P. Ryan; Adam L. Heuberger; Tiffany L. Weir; Brittany Barnett; Corey D. Broeckling; Jessica E. Prenni

Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography−mass spectrometry (GC−MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety’s nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties.


Plant Biotechnology Journal | 2015

Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis.

Philip D. Weyman; Karen Beeri; Stephane C. Lefebvre; Josefa Rivera; James McCarthy; Adam L. Heuberger; Graham Peers; Andrew E. Allen; Christopher L. Dupont

Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow on urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle.


Metabolomics | 2013

Assigning precursor–product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies

Corey D. Broeckling; Adam L. Heuberger; Jonathan A. Prince; Erik Ingelsson; Jessica E. Prenni

Tandem mass spectrometry using precursor ion selection (MS/MS) is an invaluable tool for structural elucidation of small molecules. In non-targeted metabolite profiling studies, instrument duty cycle limitations and experimental costs have driven efforts towards alternate approaches. Recently, researchers have begun to explore methods for collecting indiscriminant MS/MS (idMS/MS) data in which the fragmentation process does not involve precursor ion isolation. While this approach has many advantages, importantly speed, sensitivity and coverage, confident assignment of precursor–product ion relationships is challenging, which has inhibited broad adoption of the technique. Here, we present an approach that uses open source software to improve the assignment of precursor–product relationships in idMS/MS data by appending a dataset-wide correlational analysis to existing tools. The utility of the approach was demonstrated using a dataset of standard compounds spiked into a malt-barley background, as well as unspiked human serum. The workflow was able to recreate idMS/MS spectra which are highly similar to standard MS/MS spectra of authentic standards, even in the presence of a complex matrix background. The application of this approach has the potential to generate high quality idMS/MS spectra for each detectable molecular feature, which will streamline the identification process for non-targeted metabolite profiling studies.


Nutrients | 2015

Pilot Dietary Intervention with Heat-Stabilized Rice Bran Modulates Stool Microbiota and Metabolites in Healthy Adults

Amy M. Sheflin; Erica C. Borresen; Melissa Wdowik; Sangeeta Rao; Regina J. Brown; Adam L. Heuberger; Corey D. Broeckling; Tiffany L. Weir; Elizabeth P. Ryan

Heat-stabilized rice bran (SRB) has been shown to regulate blood lipids and glucose, modulate gut mucosal immunity and inhibit colorectal cancer in animal and human studies. However, SRB’s effects on gut microbial composition and metabolism and the resulting implications for health remain largely unknown. A pilot, randomized-controlled trial was developed to investigate the effects of eating 30 g/day SRB on the stool microbiome and metabolome. Seven healthy participants consumed a study meal and snack daily for 28 days. The microbiome and metabolome were characterized using 454 pyrosequencing and gas chromatography-mass spectrometry (GC-MS) at baseline, two and four weeks post-intervention. Increases in eight operational taxonomic units (OTUs), including three from Bifidobacterium and Ruminococcus genera, were observed after two and four weeks of SRB consumption (p < 0.01). Branched chain fatty acids, secondary bile acids and eleven other putative microbial metabolites were significantly elevated in the SRB group after four weeks. The largest metabolite change was a rice bran component, indole-2-carboxylic acid, which showed a mean 12% increase with SRB consumption. These data support the feasibility of dietary SRB intervention in adults and support that SRB consumption can affect gut microbial metabolism. These findings warrant future investigations of larger cohorts evaluating SRB’s effects on intestinal health.


Plant Biotechnology Journal | 2014

Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley.

Adam L. Heuberger; Corey D. Broeckling; Kaylyn R. Kirkpatrick; Jessica E. Prenni

The process of breeding superior varieties for the agricultural industry is lengthy and expensive. Plant metabolites may act as markers of quality traits, potentially expediting the appraisal of experimental lines during breeding. Here, we evaluated the utility of metabolites as markers by assessing metabolic variation influenced by genetic and environmental factors in an advanced breeding setting and in relation to the phenotypic distribution of 20 quality traits. Nontargeted liquid chromatography-mass spectrometry metabolite profiling was performed on barley (Hordeum vulgare L.) grain and malt from 72 advanced malting barley lines grown at two distinct but climatically similar locations, with 2-row and 6-row barley as the main genetic factors. 27 420 molecular features were detected, and the metabolite and quality trait profiles were similarly influenced by genotype and environment; however, malt was more influenced by genotype compared with barley. An O2PLS model characterized molecular features and quality traits that covaried, and 1319 features associated with at least one of 20 quality traits. An indiscriminant MS/MS acquisition and novel data analysis method facilitated the identification of metabolites. The analysis described 216 primary and secondary metabolites that correlated with multiple quality traits and included amines, amino acids, alkaloids, polyphenolics and lipids. The mechanisms governing quality trait-metabolite associations were interpreted based on colocalization to genetic markers and their gene annotations. The results of this study support the hypothesis that metabolism and quality traits are co-influenced by relatively narrow genetic and environmental factors and illustrate the utility of grain metabolites as functional markers of quality traits.


Frontiers in Plant Science | 2014

Evaluating plant immunity using mass spectrometry-based metabolomics workflows

Adam L. Heuberger; Faith M. Robison; S. Lyons; Corey D. Broeckling; Jessica E. Prenni

Metabolic processes in plants are key components of physiological and biochemical disease resistance. Metabolomics, the analysis of a broad range of small molecule compounds in a biological system, has been used to provide a systems-wide overview of plant metabolism associated with defense responses. Plant immunity has been examined using multiple metabolomics workflows that vary in methods of detection, annotation, and interpretation, and the choice of workflow can significantly impact the conclusions inferred from a metabolomics investigation. The broad range of metabolites involved in plant defense often requires multiple chemical detection platforms and implementation of a non-targeted approach. A review of the current literature reveals a wide range of workflows that are currently used in plant metabolomics, and new methods for analyzing and reporting mass spectrometry (MS) data can improve the ability to translate investigative findings among different plant-pathogen systems.


Reproduction, Fertility and Development | 2015

Applying metabolomic analyses to the practice of embryology: physiology, development and assisted reproductive technology

Rebecca L. Krisher; Adam L. Heuberger; Paczkowski M; Stevens J; Pospisil C; Randall S. Prather; Roger G. Sturmey; Herrick; Schoolcraft Wb

The advent of metabolomics technology and its application to small samples has allowed us to non-invasively monitor the metabolic activity of embryos in a complex culture environment. The aim of this study was to apply metabolomics technology to the analysis of individual embryos from several species during in vitro development to gain an insight into the metabolomics pathways used by embryos and their relationship with embryo quality. Alanine is produced by both in vivo- and in vitro-derived human, murine, bovine and porcine embryos. Glutamine is also produced by the embryos of these four species, but only those produced in vitro. Across species, blastocysts significantly consumed amino acids from the culture medium, whereas glucose was not significantly taken up. There are significant differences in the metabolic profile of in vivo- compared with in vitro-produced embryos at the blastocyst stage. For example, in vitro-produced murine embryos consume arginine, asparagine, glutamate and proline, whereas in vivo-produced embryos do not. Human embryos produce more alanine, glutamate and glutamine, and consume less pyruvate, at the blastocyst compared with cleavage stages. Glucose was consumed by human blastocysts, but not at a high enough level to reach significance. Consumption of tyrosine by cleavage stage human embryos is indicative of blastocyst development, although tyrosine consumption is not predictive of blastocyst quality. Similarly, although in vivo-produced murine blastocysts consumed less aspartate, lactate, taurine and tyrosine than those produced in vitro, consumption of these four amino acids by in vitro-derived embryos with high octamer-binding transcription factor 4 (Oct4) expression, indicative of high quality, did not differ from those with low Oct4 expression. Further application of metabolomic technologies to studies of the consumption and/or production of metabolites from individual embryos in a complete culture medium could transform our understanding of embryo physiology and improve our ability to produce developmentally competent embryos in vitro.


The Plant Cell | 2014

Alternative Acetate Production Pathways in Chlamydomonas reinhardtii during Dark Anoxia and the Dominant Role of Chloroplasts in Fermentative Acetate Production

Wenqiang Yang; Claudia Catalanotti; Sarah D’Adamo; Tyler M. Wittkopp; Cheryl Ingram-Smith; Luke Mackinder; Tarryn E. Miller; Adam L. Heuberger; Graham Peers; Kerry S. Smith; Martin C. Jonikas; Arthur R. Grossman; Matthew C. Posewitz

Acetate is a primary Chlamydomonas fermentative product and is linked to dark, anoxic ATP biosynthesis. Chlamydomonas ack/pat mutants were isolated to further characterize fermentation networks, revealing that chloroplast pathways are dominant in this alga, and that despite blocking the primary ATP-generating routes to acetate, Chlamydomonas retains the metabolic flexibility to produce acetate. Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.

Collaboration


Dive into the Adam L. Heuberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E.M. Carnevale

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Brick

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Tiffany L. Weir

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Amy M. Sheflin

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge