Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Lister is active.

Publication


Featured researches published by Adam Lister.


Journal of Biological Chemistry | 2010

Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway.

Ian M. Copple; Adam Lister; Akua D. Obeng; Neil R. Kitteringham; Rosalind E. Jenkins; Robert Layfield; B. Foster; Christopher E. Goldring; B. Kevin Park

Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. The activity of Nrf2 is regulated by the Cul3 adaptor Keap1, yet little is known regarding mechanisms of regulation of Keap1 itself. Here, we have used immunopurification of Keap1 and mass spectrometry, in addition to immunoblotting, to identify sequestosome 1 (SQSTM1) as a cellular binding partner of Keap1. SQSTM1 serves as a scaffold in various signaling pathways and shuttles polyubiquitinated proteins to the proteasomal and lysosomal degradation machineries. Ectopic expression of SQSTM1 led to a decrease in the basal protein level of Keap1 in a panel of cells. Furthermore, RNA interference (RNAi) depletion of SQSTM1 resulted in an increase in the protein level of Keap1 and a concomitant decrease in the protein level of Nrf2 in the absence of changes in Keap1 or Nrf2 mRNA levels. The increased protein level of Keap1 in cells depleted of SQSTM1 by RNAi was linked to a decrease in its rate of degradation; the half-life of Keap1 was almost doubled by RNAi depletion of SQSTM1. The decreased level of Nrf2 in cells depleted of SQSTM1 by RNAi was associated with decreases in the mRNA levels, protein levels, and function of several Nrf2-regulated cell defense genes. SQSTM1 was dispensable for the induction of the Keap1-Nrf2 pathway, as Nrf2 activation by tert-butylhydroquinone or iodoacetamide was not affected by RNAi depletion of SQSTM1. These findings demonstrate a physical and functional interaction between Keap1 and SQSTM1 and reveal an additional layer of regulation in the Keap1-Nrf2 pathway.


Molecular Cancer | 2011

Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy

Adam Lister; Taoufik Nedjadi; Neil R. Kitteringham; Fiona Campbell; Eithne Costello; Bryony H. Lloyd; Ian M. Copple; Samantha Williams; Andrew Owen; John P. Neoptolemos; Christopher E. Goldring; B. Kevin Park

BackgroundNrf2 is a key transcriptional regulator of a battery of genes that facilitate phase II/III drug metabolism and defence against oxidative stress. Nrf2 is largely regulated by Keap1, which directs Nrf2 for proteasomal degradation. The Nrf2/Keap1 system is dysregulated in lung, head and neck, and breast cancers and this affects cellular proliferation and response to therapy. Here, we have investigated the integrity of the Nrf2/Keap1 system in pancreatic cancer.ResultsKeap1, Nrf2 and the Nrf2 target genes AKR1c1 and GCLC were detected in a panel of five pancreatic cancer cell lines. Mutation analysis of NRF2 exon 2 and KEAP1 exons 2-6 in these cell lines identified no mutations in NRF2 and only synonomous mutations in KEAP1. RNAi depletion of Nrf2 caused a decrease in the proliferation of Suit-2, MiaPaca-2 and FAMPAC cells and enhanced sensitivity to gemcitabine (Suit-2), 5-flurouracil (FAMPAC), cisplatin (Suit-2 and FAMPAC) and gamma radiation (Suit-2). The expression of Nrf2 and Keap1 was also analysed in pancreatic ductal adenocarcinomas (n = 66 and 57, respectively) and matching normal benign epithelium (n = 21 cases). Whilst no significant correlation was seen between the expression levels of Keap1 and Nrf2 in the tumors, interestingly, Nrf2 staining was significantly greater in the cytoplasm of tumors compared to benign ducts (P < 0.001).ConclusionsExpression of Nrf2 is up-regulated in pancreatic cancer cell lines and ductal adenocarcinomas. This may reflect a greater intrinsic capacity of these cells to respond to stress signals and resist chemotherapeutic interventions. Nrf2 also appears to support proliferation in certain pancreatic adenocarinomas. Therefore, strategies to pharmacologically manipulate the levels and/or activity of Nrf2 may have the potential to reduce pancreatic tumor growth, and increase sensitivity to therapeutics.


PLOS ONE | 2012

Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

Denise V. Kratschmar; Diego Calabrese; Jo Walsh; Adam Lister; Julia Birk; Christian Appenzeller-Herzog; Pierre Moulin; Christopher E. Goldring; Alex Odermatt

Background Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1). Methods and Principal Findings Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H2O2. Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression. Conclusions The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo.


Toxicology Letters | 2014

Dibutyltin promotes oxidative stress and increases inflammatory mediators in BV-2 microglia cells.

Boonrat Chantong; Denise V. Kratschmar; Adam Lister; Alex Odermatt

The organotin dibutyltin (DBT) is used as biocide and as stabilizer in the manufacture of silicones, polyvinyl chloride plastics, polyurethanes and polyester systems. Although the immuno- and neurotoxicity of DBT has been recognized, the underlying mechanisms remained unclear and the impact of DBT on microglia cells has not yet been established. We now used cultured mouse BV-2 cells as a model of activated microglia to investigate the impact of DBT on oxidative stress and pro-inflammatory cytokines. DBT, at subcytotoxic concentrations, increased intracellular reactive oxygen species (ROS), mitochondrial mass, mitochondrial ROS, and the mRNA expression of inducible nitric oxide synthase (iNOS) and NADPH-dependent oxidase-2 (NOX-2). ATP levels were decreased by DBT, followed by activation of AMP-activated protein kinase (AMPK). Moreover, DBT potentiated the expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Inhibition of NOX-2 diminished both ROS production and induction of IL-6 expression. The DBT-mediated increase in NF-κB activity and subsequent up regulation of IL-6 was abolished by co-treatment with a NF-κB inhibitor. Treatment of cells with pharmacological inhibitors indicated a role for mitogen-activated protein kinases (MAPKs), PI3K/Akt, protein kinase C (PKC) and phospholipase C (PLC) in the DBT-induced toxicity. Finally, the calcium chelator BAPTA-AM diminished oxidative stress and induction of IL-6 expression, indicating the involvement of increased intracellular calcium in the enhanced microglia activity upon exposure to DBT. Together, the results suggest that a potentiation of oxidative stress and pro-inflammatory cytokine expression in microglia cells contribute to the toxicity of DBT in the CNS.


Kidney International | 2015

Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney

Luke M. Shelton; Adam Lister; Joanne Walsh; Rosalind E. Jenkins; Michael H. L. Wong; Cliff Rowe; Emanuele Ricci; Lorenzo Ressel; Yongxiang Fang; Philippe Demougin; Vanja Vukojevic; Paul M. O'Neill; Christopher E. Goldring; Neil R. Kitteringham; B. Kevin Park; Alex Odermatt; Ian M. Copple

The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 hours, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared to wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared to vehicle control. In light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.


Journal of Neuroinflammation | 2014

Inhibition of metabotropic glutamate receptor 5 induces cellular stress through pertussis toxin-sensitive Gi-proteins in murine BV-2 microglia cells

Boonrat Chantong; Denise V. Kratschmar; Adam Lister; Alex Odermatt

BackgroundActivation of metabotropic glutamate receptor 5 (mGluR5) by (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) was shown to suppress microglia activation and decrease the release of associated pro-inflammatory mediators. In contrast, the consequences of mGluR5 inhibition are less well understood. Here, we used BV-2 cells, retaining key characteristics of primary mouse microglia, to examine whether mGluR5 inhibition by 2-methyl-6-(phenylethynyl)-pyridine (MPEP) enhances cellular stress and production of inflammatory mediators.MethodsBV-2 cells were treated with MPEP, followed by determination of cellular stress using fluorescent dyes and high-content imaging. The expression of inflammatory mediators, endoplasmic reticulum (ER)-stress markers and phosphorylated AMPKΑ was analyzed by quantitative PCR, ELISA and Western blotting. Additionally, phospholipase C (PLC) activity, cellular ATP content and changes in intracellular free Ca2+ ([Ca2+]i) were measured using luminescence and fluorescence assays.ResultsTreatment of BV-2 microglia with 100u2009μM MPEP increased intracellular reactive oxygen species (ROS), mitochondrial superoxide, mitochondrial mass as well as inducible nitric oxide synthase (iNOS) and IL-6 expression. Furthermore, MPEP reduced cellular ATP and induced AMPKΑ phosphorylation and the expression of the ER-stress markers CHOP, GRP78 and GRP96. The MPEP-dependent effects were preceded by a rapid concentration-dependent elevation of [Ca2+]i, following Ca2+ release from the ER, mainly via inositol triphosphate-induced receptors (IP3R). The MPEP-induced ER-stress could be blocked by pretreatment with the chemical chaperone 4-phenylbutyrate and the Ca2+ chelator BAPTA-AM. Pretreatment with the AMPK agonist AICAR partially abolished, whilst the inhibitor compound C potentiated, the MPEP-dependent ER-stress. Importantly, the PLC inhibitor U-73122 and the Gi-protein inhibitor pertussis toxin (PTX) blocked the MPEP-induced increase in [Ca2+]i. Moreover, pretreatment of microglia with AICAR, BAPTA-AM, U-73122 and PTX prevented the MPEP-induced generation of oxidative stress and inflammatory mediators, further supporting a role for Gi-protein-mediated activation of PLC.ConclusionsThe results emphasize the potential pathophysiological role of mGluR5 antagonism in mediating oxidative stress, ER-stress and inflammation through a Ca2+-dependent pathway in microglia. The induction of cellular stress and inflammatory mediators involves PTX-sensitive Gi-proteins and subsequent activation of PLC, IP3R and Ca2+ release from the ER.


Toxicological Sciences | 2014

Chemical Tuning Enhances Both Potency Toward Nrf2 and In Vitro Therapeutic Index of Triterpenoids

Ian M. Copple; Luke M. Shelton; Joanne Walsh; Denise V. Kratschmar; Adam Lister; Alex Odermatt; Christopher E. Goldring; Albena T. Dinkova-Kostova; Tadashi Honda; B. Kevin Park

The transcription factor Nrf2 protects against a number of experimental pathologies, and is a promising therapeutic target. The clinical investigation of a potent Nrf2-inducing agent, the triterpenoid (TP) bardoxolone methyl (BARD), was recently halted due to adverse cardiovascular events in chronic kidney disease patients, although the underlying mechanisms are yet to be resolved. The majority of small molecule Nrf2 inducers are electrophilic and trigger Nrf2 accumulation via the chemical modification of its redox-sensitive repressor Keap1. Therefore, it is pertinent to question whether the therapeutic targeting of Nrf2 could be hindered in many cases by the inherent reactivity of a small molecule inducer toward unintended cellular targets, a key mechanism of drug toxicity. Using H4IIE-ARE8L hepatoma cells, we have examined the relationship between (a) Nrf2 induction potency, (b) toxicity and (c) in vitro therapeutic index (ratio of b:a) for BARD and a number of other small molecule activators of Nrf2. We show that BARD exhibits the highest potency toward Nrf2 and the largest in vitro therapeutic index among compounds that have been investigated clinically (namely BARD, sulforaphane and dimethylfumarate). Through further examination of structurally related TPs, we demonstrate that an increase in potency toward Nrf2 is associated with a relatively smaller increase in toxicity, indicating that medicinal chemistry can be used to enhance the specificity of a compound as an inducer of Nrf2 signaling whilst simultaneously increasing its therapeutic index. These findings will inform the continuing design and development of drugs targeting Nrf2.


Atherosclerosis | 2017

Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation

Parisa Aghagolzadeh; Ramin Radpour; Matthias Bachtler; Harry van Goor; Edward R. Smith; Adam Lister; Alex Odermatt; Martin Feelisch; Andreas Pasch

BACKGROUND AND AIMSnVascular calcification is a common health problem related to oxidative stress, inflammation, and circulating calciprotein particles (CPP). Hydrogen sulfide is an endogenous signaling molecule with antioxidant properties and potential for drug development targeting redox signaling. Yet, its molecular mechanisms of action in vascular smooth muscle cell (VSMC) calcification have not been delineated. We therefore sought to identify key pathways involved in the calcification-inhibitory properties of sulfide employing our recently developed CPP-induced VSMC calcification model.nnnMETHODSnUsing next-generation sequencing, we investigated the transcriptomic changes of sodium hydrosulfide-treated versus non-treated calcifying VSMCs. The potential role of candidate genes and/or regulatory pathways in prevention of calcification was investigated by small interfering RNA (siRNA).nnnRESULTSnCPP led to a pronounced accumulation of cell-associated calcium, which was decreased by sulfide in a concentration-dependent manner. Both, CPP-induced hydrogen peroxide production and enhanced pro-inflammatory/oxidative stress-related gene expression signatures were attenuated by sulfide-treatment. Gene ontology enrichment and in silico pathway analysis of our transcriptome data suggested NAD(P)H dehydrogenase [quinone] 1 (NQO1) as potential mediator. Corroborating these findings, silencing of Kelch-like ECH-associated protein 1 (KEAP1), an inhibitor of nuclear factor (erythroid-derived 2)-like 2 (NRF2) nuclear activity, enhanced NQO1 expression, whereas NRF2 silencing reduced the expression of NQO1 and abrogated the calcification-suppressing activity of sulfide. Moreover, immunofluorescence microscopy and Western blot analysis confirmed nuclear translocation of NRF2 by sulfide in VSMC.nnnCONCLUSIONSnSulfide attenuates CPP-induced VSMC calcification inxa0vitro via the KEAP1-NRF2 redox sensing/stress response system by enhancing NQO1 expression.


Scientific Reports | 2018

NRF2 regulates the glutamine transporter Slc38a3 (SNAT3) in kidney in response to metabolic acidosis

Adam Lister; Soline Bourgeois; P. Silva; Isabel Rubio-Aliaga; Philippe Marbet; Joanne Walsh; Luke M. Shelton; Bettina Keller; François Verrey; Olivier Devuyst; Pieter Giesbertz; Hannelore Daniel; Christopher E. Goldring; Ian M. Copple; Carsten A. Wagner; Alex Odermatt

Expression of the glutamine transporter SNAT3 increases in kidney during metabolic acidosis, suggesting a role during ammoniagenesis. Microarray analysis of Nrf2 knock-out (KO) mouse kidney identified Snat3 as the most significantly down-regulated transcript compared to wild-type (WT). We hypothesized that in the absence of NRF2 the kidney would be unable to induce SNAT3 under conditions of metabolic acidosis and therefore reduce the availability of glutamine for ammoniagenesis. Metabolic acidosis was induced for 7 days in WT and Nrf2 KO mice. Nrf2 KO mice failed to induce Snat3 mRNA and protein expression during metabolic acidosis. However, there were no differences in blood pH, bicarbonate, pCO2, chloride and calcium or urinary pH, ammonium and phosphate levels. Normal induction of ammoniagenic enzymes was observed whereas several amino acid transporters showed differential regulation. Moreover, Nrf2 KO mice during acidosis showed increased expression of renal markers of oxidative stress and injury and NRF2 activity was increased during metabolic acidosis in WT kidney. We conclude that NRF2 is required to adapt the levels of SNAT3 in response to metabolic acidosis. In the absence of NRF2 and SNAT3, the kidney does not have any major acid handling defect; however, increased oxidative stress and renal injury may occur.


Nephrology Dialysis Transplantation | 2017

SP406HYDROGEN SULFIDE (H2S) ATTENUATES CPP-INDUCED CALCIFICATION OF VASCULAR SMOOTH MUSCLE CELLS VIA ACTIVATION OF THE KEAP1 NRF2 NQO1 SIGNALING PATHWAY

Parisa Aghagolzadeh; Ramin Radpour; Matthias Bachtler; Harry van Goor; Edward R. Smith; Adam Lister; Alex Odermatt; Martin Feelisch; Andreas Pasch

Collaboration


Dive into the Adam Lister's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joanne Walsh

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge