Adam M. DeRosa
State University of New York System
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adam M. DeRosa.
Journal of Investigative Dermatology | 2009
Jack R. Lee; Adam M. DeRosa; Thomas W. White
Mutations in the GJB2 gene-encoding connexin 26 (Cx26) have been linked to skin disorders and genetic deafness. However, the severity and type of the skin disorders caused by Cx26 mutations are heterogeneous. Here we explored the effect of Cx26 KID syndrome-associated mutations, G12R, S17F, and D50N on channel function. The Cx26 N14K mutation was also examined that is associated with deafness but has a skin disorder distinct from the KID syndrome mutations. The proteins were all expressed in Xenopus oocytes with levels equal to wild-type Cx26. The G12R, N14K, and D50N mutations resulted in larger hemichannel currents than the wild-type-expressing cells, but the S17F mutation resulted in a complete loss of hemichannel activity. Elevated hemichannel activity correlated with an increased cell death. This result could be reversed through the elevation of calcium (Ca2+) in the extracellular media. Functional gap junctions were only produced by paired N14K cells, which had a similar conductance level to wild type, even though they exhibited a complete loss of voltage sensitivity. This set of data confirms that aberrant hemichannel activity is a common feature of Cx26 mutations associated with KID syndrome, and this may contribute to a loss of cell viability and tissue integrity.
Journal of Cell Science | 2006
Chun-hong Xia; Debra Cheung; Adam M. DeRosa; Bo Chang; Woo-Kuen Lo; Thomas W. White; Xiaohua Gong
A G22R point mutation in α8 connexin (Cx50) has been previously shown to cause a severe cataract by interacting with endogenous wild-type α3 connexin (Cx46) in mouse lenses. Here, we tested whether a knocked-in α3 connexin expressed on the locus of the endogenous α8 connexin could modulate the severe cataract caused by the α8-G22R mutation. We found that the α3(-/-) α8(G22R/-) mice developed severe cataracts with disrupted inner fibers and posterior rupture while the α3(-/-) α8(G22R/KIα3) lens contained relatively normal inner fibers without lens posterior rupture. The α8-G22R mutant proteins produced typical punctate staining of gap junctions between fiber cells of α3(-/-) α8(G22R/KIα3) lenses, but not in those of α3(-/-) α8(G22R/-) lenses. Thus, we hypothesize that the knocked-in α3 connexin subunits interact with the α8-G22R connexin subunits to form functional gap junction channels and rescue the lens phenotype. Using an electrical coupling assay consisting of paired Xenopus oocytes, we demonstrated that only co-expression of mutant α8-G22R and wild-type α3 connexin subunits forms functional gap junction channels with reduced conductance and altered voltage sensitivity compared with the channels formed by α3 connexin subunits alone. Thus, knocked-in α3 connexin and mutant α8-G22R connexin probably form heteromeric gap junction channels that influence lens homeostasis and lens transparency.
Experimental Cell Research | 2009
Adam M. DeRosa; Gülistan Meşe; Leping Li; Caterina Sellitto; Peter R. Brink; Xiaohua Gong; Thomas W. White
Mutations in Connexin50 (Cx50) cause cataracts in both humans and mice. The mechanism(s) behind how mutated connexins lead to a variety of cataracts have yet to be fully elucidated. Here, we tested whether the cataract inducing Cx50-S50P mutant interacts with wild-type Connexin43 (Cx43) to form mixed channels with attenuated function. Using dual whole-cell voltage clamp, immunofluorescent microscopy and in situ dye transfer analysis we identified a unique interaction between the mutant subunit and wild-type Cx43. In paired Xenopus oocytes, co-expression of Cx50-S50P with Cx43 reduced electrical coupling >/=90%, without a reduction in protein expression. In transfected cells, Cx50-S50P did not target to cell-cell interfaces by itself, but co-expression of Cx50-S50P with Cx43 resulted in its localization at areas of cell-cell contact. We used Cx43 conditional knockout, Cx50 knockout and Cx50-S50P mutant mice to examine this interaction in vivo. Mice expressing both Cx43 and Cx50-S50P in the lens epithelium revealed a unique expression pattern for Cx43 and a reduction in Cx43 protein. In situ dye transfer experiments showed that the Cx50-S50P mutant, but not the Cx50, or Cx43 conditional knockout, greatly inhibited epithelial cell gap junctional communication in a manner similar to a double knockout of Cx43 and Cx50. The inhibitory affects of Cx50-S50P lead to diminished electrical coupling in vitro, as well as a discernable reduction in epithelial cell dye permeation. These data suggest that dominant inhibition of Cx43 mediated epithelial cell coupling may play a role in the lens pathophysiology caused by the Cx50-S50P mutation.
Journal of Cell Science | 2007
Adam M. DeRosa; Chun-hong Xia; Xiaohua Gong; Thomas W. White
Mutations within connexin50 (Cx50) have been linked to various cataract phenotypes. To determine the mechanism behind cataract formation we used the paired Xenopus oocyte system in conjunction with transfected HeLa cells and genetically engineered mouse models to examine the functional characteristics of gap junctions in which a cataract-causing mutant of Cx50 (hereafter referred to as Cx50-S50P) is expressed. Channels comprising Cx50-S50P subunits alone failed to induce electrical coupling. However, the mixed expression of Cx50-S50P and wild-type subunits of either Cx50 or Cx46 – to create heteromeric gap junctions – resulted in functional intercellular channels with altered voltage-gating properties compared with homotypic wild-type channels. Additionally, immunofluorescence microscopy showed that channels of Cx50-S50P subunits alone failed to localize to the plasma membrane – unlike channels composed of Cx46 subunits, which concentrated at cell-cell appositions. Cx50-S50P colocalized with wild-type Cx46 in both transfected HeLa cells in vitro and mouse lens sections in vivo. Taken together, these data define the electrophysiological properties and intracellular targeting of gap junctions formed by the heteromeric combination of Cx50 or Cx46 and Cx50-S50P mutant proteins. Additionally, mixed channels displayed significantly altered gating properties, a phenomenon that may contribute to the cataract that is associated with this mutation.
FEBS Letters | 2007
Angela D. Hoptak-Solga; Kathryn A. Klein; Adam M. DeRosa; Thomas W. White; M. Kathryn Iovine
Mutations in the zebrafish connexin43 (cx43) gene cause the short fin phenotype, indicating that direct cell–cell communication contributes to bone length. Three independently generated cx43 alleles exhibit short segments of variable sizes, suggesting that gap junctional intercellular communication may regulate bone growth. Dye coupling assays showed that all alleles are capable of forming gap junction channels. However, ionic coupling assays revealed allele‐specific differences in coupling efficiency and gating. For instance, oocyte pairs expressing the weakest allele exhibited much higher levels of coupling than either of the strong alleles. Therefore, measurable differences in Cx43 function may be correlated with the severity of defects in bone length.
PLOS ONE | 2012
Chun-hong Xia; Bo Chang; Adam M. DeRosa; Catherine Cheng; Thomas W. White; Xiaohua Gong
The mouse semi-dominant Nm2249 mutation displays variable cataracts in heterozygous mice and smaller lenses with severe cataracts in homozygous mice. This mutation is caused by a Gja8R205G point mutation in the second extracellular loop of the Cx50 (or α8 connexin) protein. Immunohistological data reveal that Cx50-R205G mutant proteins and endogenous wild-type Cx46 (or α3 connexin) proteins form diffuse tiny spots rather than typical punctate signals of normal gap junctions in the lens. The level of phosphorylated Cx46 proteins is decreased in Gja8R205G/R205G mutant lenses. Genetic analysis reveals that the Cx50-R205G mutation needs the presence of wild-type Cx46 to disrupt lens peripheral fibers and epithelial cells. Electrophysiological data in Xenopus oocytes reveal that Cx50-R205G mutant proteins block channel function of gap junctions composed of wild-type Cx50, but only affect the gating of wild-type Cx46 channels. Both genetic and electrophysiological results suggest that Cx50-R205G mutant proteins alone are unable to form functional channels. These findings imply that the Gja8R205G mutation differentially impairs the functions of Cx50 and Cx46 to cause cataracts, small lenses and microphthalmia. The Gja8R205G mutation occurs at the same conserved residue as the human GJA8R198W mutation. This work provides molecular insights to understand the cataract and microphthalmia/microcornea phenotype caused by Gja8 mutations in mice and humans.
Developmental Dynamics | 2010
Liang Tao; Adam M. DeRosa; Thomas W. White; Gunnar Valdimarsson
We have identified and characterized a zebrafish connexin, Cx30.3. Sequence similarity analyses suggested that Cx30.3 was orthologous to both mammalian Cx26 and Cx30, known to play important roles in the skin and inner ear of mammals. Analysis of mRNA expression showed that Cx30.3 was present in early embryos, and was highly abundant in skin, but also detected in other tissues including fins, inner ear, heart, and the retina. Injection of Cx30.3 cRNA into Xenopus oocytes elicited robust intercellular coupling with voltage gating sensitivity similar to mammalian Cx26 and Cx30. The similarities in functional properties and expression patterns suggest that Cx30.3, like mammalian Cx26 and Cx30, may play a significant role in skin development, hearing, and balance in zebrafish. Thus, zebrafish could potentially serve as an excellent model to study disorders of the skin and deafness that result from human connexin mutations. Developmental Dynamics 239:2627–2636, 2010.
American Journal of Physiology-cell Physiology | 2007
Dwan A. Gerido; Adam M. DeRosa; Gabriele Richard; Thomas W. White
Investigative Ophthalmology & Visual Science | 2006
Adam M. DeRosa; Rickie Mui; Miduturu Srinivas; Thomas W. White
Investigative Ophthalmology & Visual Science | 2008
Adam M. DeRosa; Chun-hong Xia; Xiong Gong; Thomas W. White