Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Powell is active.

Publication


Featured researches published by Adam Powell.


Science | 2009

Late Pleistocene Demography and the Appearance of Modern Human Behavior

Adam Powell; Stephen Shennan; Mark G. Thomas

War and Peace? Modern behavior, including the development of advanced tools, musical instruments, and art, seems to have arisen in humans in stages. The earliest hints are seen in Africa about 70 to 90,000 years ago, but later in Europe about 45,000 years ago. An ongoing discussion centers on the origins and significance of human prosociality. During early human development, could the benefits of altruistic behavior have outweighed its costs (see the Perspective by Mace)? Bowles (p. 1293) constructed a model of conflict between groups of humans and extracted estimates of the critical parameters from archaeological and ethnographic data sets. Provocatively, it appears that warfare might have enhanced the emergence and persistence of altruistic behavior. Powell et al. (p. 1298) present a population model that shows that the development of modern behaviors may rely on the attainment of critical population densities and migratory patterns required for stable cultural transmission. The model is consistent with genetic inferences of population dynamics in Africa and Europe and suggests that these cultural changes may not solely reflect increased cognitive evolution. Population size and migration account for modern human behavior appearing in Africa about 90,000 years ago but much later across Europe. The origins of modern human behavior are marked by increased symbolic and technological complexity in the archaeological record. In western Eurasia this transition, the Upper Paleolithic, occurred about 45,000 years ago, but many of its features appear transiently in southern Africa about 45,000 years earlier. We show that demography is a major determinant in the maintenance of cultural complexity and that variation in regional subpopulation density and/or migratory activity results in spatial structuring of cultural skill accumulation. Genetic estimates of regional population size over time show that densities in early Upper Paleolithic Europe were similar to those in sub-Saharan Africa when modern behavior first appeared. Demographic factors can thus explain geographic variation in the timing of the first appearance of modern behavior without invoking increased cognitive capacity.


PLOS Computational Biology | 2009

The origins of lactase persistence in Europe.

Yuval Itan; Adam Powell; Mark A. Beaumont; Joachim Burger; Mark G. Thomas

Lactase persistence (LP) is common among people of European ancestry, but with the exception of some African, Middle Eastern and southern Asian groups, is rare or absent elsewhere in the world. Lactase gene haplotype conservation around a polymorphism strongly associated with LP in Europeans (−13,910 C/T) indicates that the derived allele is recent in origin and has been subject to strong positive selection. Furthermore, ancient DNA work has shown that the −13,910*T (derived) allele was very rare or absent in early Neolithic central Europeans. It is unlikely that LP would provide a selective advantage without a supply of fresh milk, and this has lead to a gene-culture coevolutionary model where lactase persistence is only favoured in cultures practicing dairying, and dairying is more favoured in lactase persistent populations. We have developed a flexible demic computer simulation model to explore the spread of lactase persistence, dairying, other subsistence practices and unlinked genetic markers in Europe and western Asias geographic space. Using data on −13,910*T allele frequency and farming arrival dates across Europe, and approximate Bayesian computation to estimate parameters of interest, we infer that the −13,910*T allele first underwent selection among dairying farmers around 7,500 years ago in a region between the central Balkans and central Europe, possibly in association with the dissemination of the Neolithic Linearbandkeramik culture over Central Europe. Furthermore, our results suggest that natural selection favouring a lactase persistence allele was not higher in northern latitudes through an increased requirement for dietary vitamin D. Our results provide a coherent and spatially explicit picture of the coevolution of lactase persistence and dairying in Europe.


Philosophical Transactions of the Royal Society B | 2011

Evolution of lactase persistence: an example of human niche construction

Pascale Gerbault; Anke Liebert; Yuval Itan; Adam Powell; Mathias Currat; Joachim Burger; Dallas M. Swallow; Mark G. Thomas

Niche construction is the process by which organisms construct important components of their local environment in ways that introduce novel selection pressures. Lactase persistence is one of the clearest examples of niche construction in humans. Lactase is the enzyme responsible for the digestion of the milk sugar lactose and its production decreases after the weaning phase in most mammals, including most humans. Some humans, however, continue to produce lactase throughout adulthood, a trait known as lactase persistence. In European populations, a single mutation (−13910*T) explains the distribution of the phenotype, whereas several mutations are associated with it in Africa and the Middle East. Current estimates for the age of lactase persistence-associated alleles bracket those for the origins of animal domestication and the culturally transmitted practice of dairying. We report new data on the distribution of −13910*T and summarize genetic studies on the diversity of lactase persistence worldwide. We review relevant archaeological data and describe three simulation studies that have shed light on the evolution of this trait in Europe. These studies illustrate how genetic and archaeological information can be integrated to bring new insights to the origins and spread of lactase persistence. Finally, we discuss possible improvements to these models.


Cell | 2013

Modeling Recent Human Evolution in Mice by Expression of a Selected EDAR Variant

Yana George Kamberov; Sijia Wang; Jingze Tan; Pascale Gerbault; Abigail R. Wark; Longzhi Tan; Yajun Yang; Shilin Li; Kun Tang; Hua Chen; Adam Powell; Yuval Itan; Dorian Q. Fuller; Jason Lohmueller; Junhao Mao; Asa Schachar; Madeline Paymer; Elizabeth Hostetter; Elizabeth H. Byrne; Melissa Burnett; Andrew P. McMahon; Mark G. Thomas; Daniel E. Lieberman; Li Jin; Clifford J. Tabin; Bruce A. Morgan; Pardis C. Sabeti

An adaptive variant of the human Ectodysplasin receptor, EDARV370A, is one of the strongest candidates of recent positive selection from genome-wide scans. We have modeled EDAR370A in mice and characterized its phenotype and evolutionary origins in humans. Our computational analysis suggests the allele arose in central China approximately 30,000 years ago. Although EDAR370A has been associated with increased scalp hair thickness and changed tooth morphology in humans, its direct biological significance and potential adaptive role remain unclear. We generated a knockin mouse model and find that, as in humans, hair thickness is increased in EDAR370A mice. We identify new biological targets affected by the mutation, including mammary and eccrine glands. Building on these results, we find that EDAR370A is associated with an increased number of active eccrine glands in the Han Chinese. This interdisciplinary approach yields unique insight into the generation of adaptive variation among modern humans.


Science | 2013

2000 Years of Parallel Societies in Stone Age Central Europe

Olaf Nehlich; Michael P. Richards; Jörg Orschiedt; Mark G. Thomas; Christian Sell; Zuzana Fajkošová; Adam Powell; Joachim Burger

Farming or Fishing Evidence has been mounting that most modern European populations originated from the immigration of farmers who displaced the hunter-gatherers of the Mesolithic. Bollongino et al. (p. 479, published online 10 October) present analyses of palaeogenetic and isotopic data from Neolithic human skeletons from the Blätterhöhle burial site in Germany. The analyses identify a Neolithic freshwater fish–eating hunter-gatherer group, living contemporaneously and in close proximity to a Neolithic farming group. While there is some evidence that hunter-gatherer women may have admixed into the farming population, it appears likely that marriage or cultural boundaries between the groups persisted for over two millennia. Thus, the transition from the Mesolithic involved a more complex pattern of coexistence among humans of different genetic origins and cultures in the Neolithic, rather than a more abrupt transition. Genetic and isotopic evidence document changes occurring in Europe during the Neolithic era. Debate on the ancestry of Europeans centers on the interplay between Mesolithic foragers and Neolithic farmers. Foragers are generally believed to have disappeared shortly after the arrival of agriculture. To investigate the relation between foragers and farmers, we examined Mesolithic and Neolithic samples from the Blätterhöhle site. Mesolithic mitochondrial DNA sequences were typical of European foragers, whereas the Neolithic sample included additional lineages that are associated with early farmers. However, isotope analyses separate the Neolithic sample into two groups: one with an agriculturalist diet and one with a forager and freshwater fish diet, the latter carrying mitochondrial DNA sequences typical of Mesolithic hunter-gatherers. This indicates that the descendants of Mesolithic people maintained a foraging lifestyle in Central Europe for more than 2000 years after the arrival of farming societies.


Current Biology | 2016

Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe

Cosimo Posth; Gabriel Renaud; Alissa Mittnik; Dorothée G. Drucker; Hélène Rougier; Christophe Cupillard; Frédérique Valentin; Corinne Thevenet; Anja Furtwängler; Christoph Wißing; Michael Francken; Maria Malina; Michael Bolus; Martina Lari; Elena Gigli; Giulia Capecchi; Isabelle Crevecoeur; Cédric Beauval; Damien Flas; Mietje Germonpré; Johannes van der Plicht; Richard Cottiaux; Bernard Gély; Annamaria Ronchitelli; Kurt Wehrberger; Dan Grigorescu; Jiří Svoboda; Patrick Semal; David Caramelli; Hervé Bocherens

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.


Molecular Biology and Evolution | 2012

Modern Taurine Cattle Descended from Small Number of Near-Eastern Founders

Joachim Burger; Adam Powell; Marjan Mashkour; Jean-Denis Vigne; Mark G. Thomas

Archaeozoological and genetic data indicate that taurine cattle were first domesticated from local wild ox (aurochs) in the Near East some 10,500 years ago. However, while modern mitochondrial DNA (mtDNA) variation indicates early Holocene founding event(s), a lack of ancient DNA data from the region of origin, variation in mutation rate estimates, and limited application of appropriate inference methodologies have resulted in uncertainty on the number of animals first domesticated. A large number would be expected if cattle domestication was a technologically straightforward and unexacting region-wide phenomenon, while a smaller number would be consistent with a more complex and challenging process. We report mtDNA sequences from 15 Neolithic to Iron Age Iranian domestic cattle and, in conjunction with modern data, use serial coalescent simulation and approximate Bayesian computation to estimate that around 80 female aurochs were initially domesticated. Such a low number is consistent with archaeological data indicating that initial domestication took place in a restricted area and suggests the process was constrained by the difficulty of sustained managing and breeding of the wild progenitors of domestic cattle.


BMC Genetics | 2015

The genetic prehistory of domesticated cattle from their origin to the spread across Europe

Amelie Scheu; Adam Powell; Jean-Denis Vigne; Anne Tresset; Canan Çakirlar; Norbert Benecke; Joachim Burger

BackgroundCattle domestication started in the 9th millennium BC in Southwest Asia. Domesticated cattle were then introduced into Europe during the Neolithic transition. However, the scarcity of palaeogenetic data from the first European domesticated cattle still inhibits the accurate reconstruction of their early demography. In this study, mitochondrial DNA from 193 ancient and 597 modern domesticated cattle (Bos taurus) from sites across Europe, Western Anatolia and Iran were analysed to provide insight into the Neolithic dispersal process and the role of the local European aurochs population during cattle domestication.ResultsUsing descriptive summary statistics and serial coalescent simulations paired with approximate Bayesian computation we find: (i) decreasing genetic diversity in a southeast to northwest direction, (ii) strong correlation of genetic and geographical distances, iii) an estimated effective size of the Near Eastern female founder population of 81, iv) that the expansion of cattle from the Near East and Anatolia into Europe does not appear to constitute a significant bottleneck, and that v) there is evidence for gene-flow between the Near Eastern/Anatolian and European cattle populations in the early phases of the European Neolithic, but that it is restricted after 5,000 BCE.ConclusionsThe most plausible scenario to explain these results is a single and regionally restricted domestication process of cattle in the Near East with subsequent migration into Europe during the Neolithic transition without significant maternal interbreeding with the endogenous wild stock. Evidence for gene-flow between cattle populations from Southwestern Asia and Europe during the earlier phases of the European Neolithic points towards intercontinental trade connections between Neolithic farmers.


BMC Evolutionary Biology | 2010

Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria

Krishna R. Veeramah; Bruce Connell; Naser Ansari Pour; Adam Powell; Christopher A Plaster; David Zeitlyn; Nancy R. Mendell; Michael E. Weale; Neil Bradman; Mark G. Thomas

BackgroundThe Cross River region in Nigeria is an extremely diverse area linguistically with over 60 distinct languages still spoken today. It is also a region of great historical importance, being a) adjacent to the likely homeland from which Bantu-speaking people migrated across most of sub-Saharan Africa 3000-5000 years ago and b) the location of Calabar, one of the largest centres during the Atlantic slave trade. Over 1000 DNA samples from 24 clans representing speakers of the six most prominent languages in the region were collected and typed for Y-chromosome (SNPs and microsatellites) and mtDNA markers (Hypervariable Segment 1) in order to examine whether there has been substantial gene flow between groups speaking different languages in the region. In addition the Cross River region was analysed in the context of a larger geographical scale by comparison to bordering Igbo speaking groups as well as neighbouring Cameroon populations and more distant Ghanaian communities.ResultsThe Cross River region was shown to be extremely homogenous for both Y-chromosome and mtDNA markers with language spoken having no noticeable effect on the genetic structure of the region, consistent with estimates of inter-language gene flow of 10% per generation based on sociological data. However the groups in the region could clearly be differentiated from others in Cameroon and Ghana (and to a lesser extent Igbo populations). Significant correlations between genetic distance and both geographic and linguistic distance were observed at this larger scale.ConclusionsPrevious studies have found significant correlations between genetic variation and language in Africa over large geographic distances, often across language families. However the broad sampling strategies of these datasets have limited their utility for understanding the relationship within language families. This is the first study to show that at very fine geographic/linguistic scales language differences can be maintained in the presence of substantial gene flow over an extended period of time and demonstrates the value of dense sampling strategies and having DNA of known and detailed provenance, a practice that is generally rare when investigating sub-Saharan African demographic processes using genetic data.


BioScience | 2013

Toward a Mechanistic Understanding of Linguistic Diversity

Michael C. Gavin; Carlos A. Botero; Claire Bowern; Robert K. Colwell; Michael Dunn; Robert R. Dunn; Russell D. Gray; Kathryn R. Kirby; Joe McCarter; Adam Powell; Thiago F. Rangel; John Richard Stepp; Michelle Trautwein; Jennifer L. Verdolin; Gregor Yanega

Our species displays remarkable linguistic diversity. Although the uneven distribution of this diversity demands explanation, the drivers of these patterns have not been conclusively determined. We address this issue in two steps: First, we review previous empirical studies whose authors have suggested environmental, geographical, and sociocultural drivers of linguistic diversification. However, contradictory results and methodological variation make it difficult to draw general conclusions. Second, we outline a program for future research. We suggest that future analyses should account for interactions among causal factors, the lack of spatial and phylogenetic independence of the data, and transitory patterns. Recent analytical advances in biogeography and evolutionary biology, such as simulation modeling of diversity patterns, hold promise for testing four key mechanisms of language diversification proposed here: neutral change, population movement, contact, and selection. Future modeling approaches should also evaluate how the outcomes of these processes are influenced by demography, environmental heterogeneity, and time.

Collaboration


Dive into the Adam Powell's collaboration.

Top Co-Authors

Avatar

Mark G. Thomas

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Shennan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuval Itan

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Valentin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Muthukrishna

London School of Economics and Political Science

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge