Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam S. Butterworth is active.

Publication


Featured researches published by Adam S. Butterworth.


Annals of Internal Medicine | 2014

Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk: A Systematic Review and Meta-analysis

Rajiv Chowdhury; Samantha Warnakula; Setor K. Kunutsor; Francesca L. Crowe; Heather Ward; Laura Johnson; Oscar H. Franco; Adam S. Butterworth; Nita G. Forouhi; Simon G. Thompson; Kay-Tee Khaw; Dariush Mozaffarian; John Danesh; Emanuele Di Angelantonio

BACKGROUND Guidelines advocate changes in fatty acid consumption to promote cardiovascular health. PURPOSE To summarize evidence about associations between fatty acids and coronary disease. DATA SOURCES MEDLINE, Science Citation Index, and Cochrane Central Register of Controlled Trials through July 2013. STUDY SELECTION Prospective, observational studies and randomized, controlled trials. DATA EXTRACTION Investigators extracted data about study characteristics and assessed study biases. DATA SYNTHESIS There were 32 observational studies (530,525 participants) of fatty acids from dietary intake; 17 observational studies (25,721 participants) of fatty acid biomarkers; and 27 randomized, controlled trials (103,052 participants) of fatty acid supplementation. In observational studies, relative risks for coronary disease were 1.02 (95% CI, 0.97 to 1.07) for saturated, 0.99 (CI, 0.89 to 1.09) for monounsaturated, 0.93 (CI, 0.84 to 1.02) for long-chain ω-3 polyunsaturated, 1.01 (CI, 0.96 to 1.07) for ω-6 polyunsaturated, and 1.16 (CI, 1.06 to 1.27) for trans fatty acids when the top and bottom thirds of baseline dietary fatty acid intake were compared. Corresponding estimates for circulating fatty acids were 1.06 (CI, 0.86 to 1.30), 1.06 (CI, 0.97 to 1.17), 0.84 (CI, 0.63 to 1.11), 0.94 (CI, 0.84 to 1.06), and 1.05 (CI, 0.76 to 1.44), respectively. There was heterogeneity of the associations among individual circulating fatty acids and coronary disease. In randomized, controlled trials, relative risks for coronary disease were 0.97 (CI, 0.69 to 1.36) for α-linolenic, 0.94 (CI, 0.86 to 1.03) for long-chain ω-3 polyunsaturated, and 0.89 (CI, 0.71 to 1.12) for ω-6 polyunsaturated fatty acid supplementations. LIMITATION Potential biases from preferential publication and selective reporting. CONCLUSION Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats. PRIMARY FUNDING SOURCE British Heart Foundation, Medical Research Council, Cambridge National Institute for Health Research Biomedical Research Centre, and Gates Cambridge.


The Lancet | 2010

Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies

Nadeem Sarwar; Manjinder S. Sandhu; Sally L. Ricketts; Adam S. Butterworth; E Di Angelantonio; S. M. Boekholdt; Willem H. Ouwehand; Hugh Watkins; Nilesh J. Samani; Danish Saleheen; Debbie A. Lawlor; Muredach P. Reilly; Aroon D. Hingorani; P.J. Talmud; John Danesh

Summary Background Whether triglyceride-mediated pathways are causally relevant to coronary heart disease is uncertain. We studied a genetic variant that regulates triglyceride concentration to help judge likelihood of causality. Methods We assessed the −1131T>C (rs662799) promoter polymorphism of the apolipoprotein A5 (APOA5) gene in relation to triglyceride concentration, several other risk factors, and risk of coronary heart disease. We compared disease risk for genetically-raised triglyceride concentration (20 842 patients with coronary heart disease, 35 206 controls) with that recorded for equivalent differences in circulating triglyceride concentration in prospective studies (302 430 participants with no history of cardiovascular disease; 12 785 incident cases of coronary heart disease during 2·79 million person-years at risk). We analysed −1131T>C in 1795 people without a history of cardiovascular disease who had information about lipoprotein concentration and diameter obtained by nuclear magnetic resonance spectroscopy. Findings The minor allele frequency of −1131T>C was 8% (95% CI 7–9). −1131T>C was not significantly associated with several non-lipid risk factors or LDL cholesterol, and it was modestly associated with lower HDL cholesterol (mean difference per C allele 3·5% [95% CI 2·6–4·6]; 0·053 mmol/L [0·039–0·068]), lower apolipoprotein AI (1·3% [0·3–2·3]; 0·023 g/L [0·005–0·041]), and higher apolipoprotein B (3·2% [1·3–5·1]; 0·027 g/L [0·011–0·043]). By contrast, for every C allele inherited, mean triglyceride concentration was 16·0% (95% CI 12·9–18·7), or 0·25 mmol/L (0·20–0·29), higher (p=4·4×10−24). The odds ratio for coronary heart disease was 1·18 (95% CI 1·11–1·26; p=2·6×10−7) per C allele, which was concordant with the hazard ratio of 1·10 (95% CI 1·08–1·12) per 16% higher triglyceride concentration recorded in prospective studies. −1131T>C was significantly associated with higher VLDL particle concentration (mean difference per C allele 12·2 nmol/L [95% CI 7·7–16·7]; p=9·3×10−8) and smaller HDL particle size (0·14 nm [0·08–0·20]; p=7·0×10−5), factors that could mediate the effects of triglyceride. Interpretation These data are consistent with a causal association between triglyceride-mediated pathways and coronary heart disease. Funding British Heart Foundation, UK Medical Research Council, Novartis.


The Lancet | 2012

Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies.

Nadeem Sarwar; Adam S. Butterworth; Daniel F. Freitag; John Gregson; Peter Willeit; Donal N. Gorman; Pei Gao; Danish Saleheen; Augusto Rendon; Christopher P. Nelson; Peter S. Braund; Alistair S. Hall; Daniel I. Chasman; Anne Tybjærg-Hansen; John Chambers; Emelia J. Benjamin; Paul W. Franks; Robert Clarke; Arthur A. M. Wilde; Mieke D. Trip; Maristella Steri; Jacqueline C. M. Witteman; Lu Qi; C. Ellen van der Schoot; Ulf de Faire; Jeanette Erdmann; H. M. Stringham; Wolfgang Koenig; Daniel J. Rader; David Melzer

Summary Background Persistent inflammation has been proposed to contribute to various stages in the pathogenesis of cardiovascular disease. Interleukin-6 receptor (IL6R) signalling propagates downstream inflammation cascades. To assess whether this pathway is causally relevant to coronary heart disease, we studied a functional genetic variant known to affect IL6R signalling. Methods In a collaborative meta-analysis, we studied Asp358Ala (rs2228145) in IL6R in relation to a panel of conventional risk factors and inflammation biomarkers in 125 222 participants. We also compared the frequency of Asp358Ala in 51 441 patients with coronary heart disease and in 136 226 controls. To gain insight into possible mechanisms, we assessed Asp358Ala in relation to localised gene expression and to postlipopolysaccharide stimulation of interleukin 6. Findings The minor allele frequency of Asp358Ala was 39%. Asp358Ala was not associated with lipid concentrations, blood pressure, adiposity, dysglycaemia, or smoking (p value for association per minor allele ≥0·04 for each). By contrast, for every copy of 358Ala inherited, mean concentration of IL6R increased by 34·3% (95% CI 30·4–38·2) and of interleukin 6 by 14·6% (10·7–18·4), and mean concentration of C-reactive protein was reduced by 7·5% (5·9–9·1) and of fibrinogen by 1·0% (0·7–1·3). For every copy of 358Ala inherited, risk of coronary heart disease was reduced by 3·4% (1·8–5·0). Asp358Ala was not related to IL6R mRNA levels or interleukin-6 production in monocytes. Interpretation Large-scale human genetic and biomarker data are consistent with a causal association between IL6R-related pathways and coronary heart disease. Funding British Heart Foundation; UK Medical Research Council; UK National Institute of Health Research, Cambridge Biomedical Research Centre; BUPA Foundation.


BMJ | 2014

Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis.

Philip Haycock; Emma E Heydon; Stephen Kaptoge; Adam S. Butterworth; Alexander Thompson; Peter Willeit

Objective To assess the association between leucocyte telomere length and risk of cardiovascular disease. Design Systematic review and meta-analysis. Data sources Studies published up to March 2014 identified through searches of Medline, Web of Science, and Embase. Eligibility criteria Prospective and retrospective studies that reported on associations between leucocyte telomere length and coronary heart disease (defined as non-fatal myocardial infarction, coronary heart disease death, or coronary revascularisation) or cerebrovascular disease (defined as non-fatal stroke or death from cerebrovascular disease) and were broadly representative of general populations—that is, they did not select cohort or control participants on the basis of pre-existing cardiovascular disease or diabetes. Results Twenty four studies involving 43 725 participants and 8400 patients with cardiovascular disease (5566 with coronary heart disease and 2834 with cerebrovascular disease) were found to be eligible. In a comparison of the shortest versus longest third of leucocyte telomere length, the pooled relative risk for coronary heart disease was 1.54 (95% confidence interval 1.30 to 1.83) in all studies, 1.40 (1.15 to 1.70) in prospective studies, and 1.80 (1.32 to 2.44) in retrospective studies. Heterogeneity between studies was moderate (I2=64%, 41% to 77%, Phet<0.001) and was not significantly explained by mean age of participants (P=0.23), the proportion of male participants (P=0.45), or distinction between retrospective versus prospective studies (P=0.32). Findings for coronary heart disease were similar in meta-analyses restricted to studies that adjusted for conventional vascular risk factors (relative risk 1.42, 95% confidence interval 1.17 to 1.73); studies with ≥200 cases (1.44, 1.20 to 1.74); studies with a high quality score (1.53, 1.22 to 1.92); and in analyses that corrected for publication bias (1.34, 1.12 to 1.60). The pooled relative risk for cerebrovascular disease was 1.42 (1.11 to 1.81), with no significant heterogeneity between studies (I2=41%, 0% to 72%, Phet=0.08). Shorter telomeres were not significantly associated with cerebrovascular disease risk in prospective studies (1.14, 0.85 to 1.54) or in studies with a high quality score (1.21, 0.83 to 1.76). Conclusion Available observational data show an inverse association between leucocyte telomere length and risk of coronary heart disease independent of conventional vascular risk factors. The association with cerebrovascular disease is less certain.


JAMA | 2012

Lipid-related markers and cardiovascular disease prediction.

E Di Angelantonio; Pei Gao; Lisa Pennells; Stephen Kaptoge; Muriel J. Caslake; Alexander Thompson; Adam S. Butterworth; Nadeem Sarwar; David Wormser; Danish Saleheen; Christie M. Ballantyne; Bruce M. Psaty; Johan Sundström; Paul M. Ridker; D Nagel; Richard F. Gillum; Ian Ford; Pierre Ducimetière; S Kiechl; Wolfgang Koenig; Dullaart Rpf.; Gerd Assmann; Ralph B. D'Agostino; Gilles R. Dagenais; Jackie A. Cooper; Daan Kromhout; Altan Onat; Robert W. Tipping; Agustín Gómez-de-la-Cámara; Anders H. Rosengren

CONTEXT The value of assessing various emerging lipid-related markers for prediction of first cardiovascular events is debated. OBJECTIVE To determine whether adding information on apolipoprotein B and apolipoprotein A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 to total cholesterol and high-density lipoprotein cholesterol (HDL-C) improves cardiovascular disease (CVD) risk prediction. DESIGN, SETTING, AND PARTICIPANTS Individual records were available for 165,544 participants without baseline CVD in 37 prospective cohorts (calendar years of recruitment: 1968-2007) with up to 15,126 incident fatal or nonfatal CVD outcomes (10,132 CHD and 4994 stroke outcomes) during a median follow-up of 10.4 years (interquartile range, 7.6-14 years). MAIN OUTCOME MEASURES Discrimination of CVD outcomes and reclassification of participants across predicted 10-year risk categories of low (<10%), intermediate (10%-<20%), and high (≥20%) risk. RESULTS The addition of information on various lipid-related markers to total cholesterol, HDL-C, and other conventional risk factors yielded improvement in the models discrimination: C-index change, 0.0006 (95% CI, 0.0002-0.0009) for the combination of apolipoprotein B and A-I; 0.0016 (95% CI, 0.0009-0.0023) for lipoprotein(a); and 0.0018 (95% CI, 0.0010-0.0026) for lipoprotein-associated phospholipase A2 mass. Net reclassification improvements were less than 1% with the addition of each of these markers to risk scores containing conventional risk factors. We estimated that for 100,000 adults aged 40 years or older, 15,436 would be initially classified at intermediate risk using conventional risk factors alone. Additional testing with a combination of apolipoprotein B and A-I would reclassify 1.1%; lipoprotein(a), 4.1%; and lipoprotein-associated phospholipase A2 mass, 2.7% of people to a 20% or higher predicted CVD risk category and, therefore, in need of statin treatment under Adult Treatment Panel III guidelines. CONCLUSION In a study of individuals without known CVD, the addition of information on the combination of apolipoprotein B and A-I, lipoprotein(a), or lipoprotein-associated phospholipase A2 mass to risk scores containing total cholesterol and HDL-C led to slight improvement in CVD prediction.


Genetic Epidemiology | 2013

Mendelian randomization analysis with multiple genetic variants using summarized data.

Stephen Burgess; Adam S. Butterworth; Simon G. Thompson

Genome‐wide association studies, which typically report regression coefficients summarizing the associations of many genetic variants with various traits, are potentially a powerful source of data for Mendelian randomization investigations. We demonstrate how such coefficients from multiple variants can be combined in a Mendelian randomization analysis to estimate the causal effect of a risk factor on an outcome. The bias and efficiency of estimates based on summarized data are compared to those based on individual‐level data in simulation studies. We investigate the impact of gene–gene interactions, linkage disequilibrium, and ‘weak instruments’ on these estimates. Both an inverse‐variance weighted average of variant‐specific associations and a likelihood‐based approach for summarized data give similar estimates and precision to the two‐stage least squares method for individual‐level data, even when there are gene–gene interactions. However, these summarized data methods overstate precision when variants are in linkage disequilibrium. If the P‐value in a linear regression of the risk factor for each variant is less than 1×10−5 , then weak instrument bias will be small. We use these methods to estimate the causal association of low‐density lipoprotein cholesterol (LDL‐C) on coronary artery disease using published data on five genetic variants. A 30% reduction in LDL‐C is estimated to reduce coronary artery disease risk by 67% (95% CI: 54% to 76%). We conclude that Mendelian randomization investigations using summarized data from uncorrelated variants are similarly efficient to those using individual‐level data, although the necessary assumptions cannot be so fully assessed.


European Heart Journal | 2014

Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis

Stephen Kaptoge; Sreenivasa Rao Kondapally Seshasai; Pei Gao; Daniel F. Freitag; Adam S. Butterworth; Anders Borglykke; Emanuele Di Angelantonio; Vilmundur Gudnason; Ann Rumley; Gordon Lowe; Torben Jørgensen; John Danesh

AIMS Because low-grade inflammation may play a role in the pathogenesis of coronary heart disease (CHD), and pro-inflammatory cytokines govern inflammatory cascades, this study aimed to assess the associations of several pro-inflammatory cytokines and CHD risk in a new prospective study, including meta-analysis of prospective studies. METHODS AND RESULTS Interleukin-6 (IL-6), IL-18, matrix metalloproteinase-9 (MMP-9), soluble CD40 ligand (sCD40L), and tumour necrosis factor-α (TNF-α) were measured at baseline in a case-cohort study of 1514 participants and 833 incident CHD events within population-based prospective cohorts at the Danish Research Centre for Prevention and Health. Age- and sex-adjusted hazard ratios (HRs) for CHD per 1-SD higher log-transformed baseline levels were: 1.37 (95% CI: 1.21-1.54) for IL-6, 1.26 (1.11-1.44) for IL-18, 1.30 (1.16-1.46) for MMP-9, 1.01 (0.89-1.15) for sCD40L, and 1.13 (1.01-1.27) for TNF-α. Multivariable adjustment for conventional vascular risk factors attenuated the HRs to: 1.26 (1.08-1.46) for IL-6, 1.12 (0.95-1.31) for IL-18, 1.21 (1.05-1.39) for MMP-9, 0.93 (0.78-1.11) for sCD40L, and 1.14 (1.00-1.31) for TNF-α. In meta-analysis of up to 29 population-based prospective studies, adjusted relative risks for non-fatal MI or CHD death per 1-SD higher levels were: 1.25 (1.19-1.32) for IL-6; 1.13 (1.05-1.20) for IL-18; 1.07 (0.97-1.19) for MMP-9; 1.07 (0.95-1.21) for sCD40L; and 1.17 (1.09-1.25) for TNF-α. CONCLUSIONS Several different pro-inflammatory cytokines are each associated with CHD risk independent of conventional risk factors and in an approximately log-linear manner. The findings lend support to the inflammation hypothesis in vascular disease, but further studies are needed to assess causality.


Genetics in Medicine | 2009

Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects

Gurdeep S. Sagoo; Adam S. Butterworth; Simon Sanderson; Charles Shaw-Smith; Julian P. T. Higgins; Hilary Burton

Abstract: Array-based comparative genomic hybridization is being increasingly used in patients with learning disability (mental retardation) and congenital anomalies. In this article, we update our previous meta-analysis evaluating the diagnostic and false-positive yields of this technology. An updated systematic review and meta-analysis was conducted investigating patients with learning disability and congenital anomalies in whom conventional cytogenetic analyses have proven negative. Nineteen studies (13,926 patients) were included of which 12 studies (13,464 patients) were published since our previous analysis. The overall diagnostic yield of causal abnormalities was 10% (95% confidence interval: 8–12%). The overall number needed to test to identify an extra causal abnormality was 10 (95% confidence interval: 8–13). The overall false-positive yield of noncausal abnormalities was 7% (95% confidence interval: 5–10%). This updated meta-analysis provides new evidence to support the use of array-based comparative genomic hybridization in investigating patients with learning disability and congenital anomalies in whom conventional cytogenetic tests have proven negative. However, given that this technology also identifies false positives at a similar rate to causal variants, caution in clinical practice should be advised.


Science | 2016

Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

Paolo Zanoni; Sumeet A. Khetarpal; Daniel B. Larach; William F. Hancock-Cerutti; John S. Millar; Marina Cuchel; Anatol Kontush; Praveen Surendran; Danish Saleheen; Stella Trompet; J.W. Jukema; De Craen A; Panos Deloukas; Naveed Sattar; Ian Ford; Chris J. Packard; Majumder Aa; Dewan S. Alam; Di Angelantonio E; Gonçalo R. Abecasis; Rajiv Chowdhury; Jeanette Erdmann; Børge G. Nordestgaard; Sune F. Nielsen; Anne Tybjærg-Hansen; Schmidt Rf; Kari Kuulasmaa; Dajiang J. Liu; Markus Perola; Stefan Blankenberg

A scavenger that protects the heart Coronary heart disease is a tale of two forms of plasma cholesterol. In contrast to the well-established effects of “bad” cholesterol (LDL-C), the role of “good” cholesterol (HDL-C) is mysterious. Elevated HDL-C correlates with a lower risk of heart disease, yet drugs that raise HDL-C levels do not reduce risk. Zanoni et al. found that some people with exceptionally high levels of HDL-C carry a rare sequence variant in the gene encoding the major HDL-C receptor, scavenger receptor BI. This variant destroys the receptors ability to take up HDL-C. Interestingly, people with this variant have a higher risk of heart disease despite having high levels of HDL-C. Science, this issue p. 1166 A human genetics study sheds light on how HDL (good) cholesterol protects against cardiovascular disease. Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).


JAMA | 2015

Association of Cardiometabolic Multimorbidity With Mortality.

E Di Angelantonio; Stephen Kaptoge; David Wormser; Peter Willeit; Adam S. Butterworth; Narinder Bansal; L M O'Keeffe; Pei Gao; Angela M. Wood; Stephen Burgess; Daniel F. Freitag; Lisa Pennells; Sanne A.E. Peters; Carole Hart; Lise Lund Håheim; Richard F. Gillum; Børge G. Nordestgaard; Bruce M. Psaty; Bu B. Yeap; Matthew Knuiman; Paul J. Nietert; Jussi Kauhanen; Jukka T. Salonen; Lewis H. Kuller; Leon A. Simons; Y. T. van der Schouw; Elizabeth Barrett-Connor; Randi Selmer; Carlos J. Crespo; Beatriz L. Rodriguez

IMPORTANCE The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES All-cause mortality and estimated reductions in life expectancy. RESULTS In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.

Collaboration


Dive into the Adam S. Butterworth's collaboration.

Top Co-Authors

Avatar

John Danesh

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danish Saleheen

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Gao

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge