Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam S. Gordon is active.

Publication


Featured researches published by Adam S. Gordon.


Clinical Pharmacology & Therapeutics | 2014

Design and anticipated outcomes of the eMERGE-PGx project: a multicenter pilot for preemptive pharmacogenomics in electronic health record systems.

Laura J. Rasmussen-Torvik; Sarah Stallings; Adam S. Gordon; Berta Almoguera; Melissa A. Basford; Suzette J. Bielinski; Ariel Brautbar; Murray H. Brilliant; David Carrell; John J. Connolly; David R. Crosslin; Kimberly F. Doheny; Carlos J. Gallego; Omri Gottesman; Daniel Seung Kim; Kathleen A. Leppig; Rongling Li; Simon Lin; Shannon Manzi; Ana R. Mejia; Jennifer A. Pacheco; Vivian Pan; Jyotishman Pathak; Cassandra Perry; Josh F. Peterson; Cynthia A. Prows; James D. Ralston; Luke V. Rasmussen; Marylyn D. Ritchie; Senthilkumar Sadhasivam

We describe here the design and initial implementation of the eMERGE‐PGx project. eMERGE‐PGx, a partnership of the Electronic Medical Records and Genomics Network and the Pharmacogenomics Research Network, has three objectives: (i) to deploy PGRNseq, a next‐generation sequencing platform assessing sequence variation in 84 proposed pharmacogenes, in nearly 9,000 patients likely to be prescribed drugs of interest in a 1‐ to 3‐year time frame across several clinical sites; (ii) to integrate well‐established clinically validated pharmacogenetic genotypes into the electronic health record with associated clinical decision support and to assess process and clinical outcomes of implementation; and (iii) to develop a repository of pharmacogenetic variants of unknown significance linked to a repository of electronic health record–based clinical phenotype data for ongoing pharmacogenomics discovery. We describe site‐specific project implementation and anticipated products, including genetic variant and phenotype data repositories, novel variant association studies, clinical decision support modules, clinical and process outcomes, approaches to managing incidental findings, and patient and clinician education methods.


JAMA | 2016

Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.

Sara L. Van Driest; Quinn S. Wells; Sarah Stallings; William S. Bush; Adam S. Gordon; Deborah A. Nickerson; Jerry H. Kim; David R. Crosslin; Gail P. Jarvik; David Carrell; James D. Ralston; Eric B. Larson; Suzette J. Bielinski; Janet E. Olson; Zi Ye; Iftikhar J. Kullo; Noura S. Abul-Husn; Stuart A. Scott; Erwin P. Bottinger; Berta Almoguera; John J. Connolly; Rosetta M. Chiavacci; Hakon Hakonarson; Laura J. Rasmussen-Torvik; Vivian Pan; Stephen D. Persell; Maureen E. Smith; Rex L. Chisholm; Terrie Kitchner; Max M. He

IMPORTANCE Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants. OBJECTIVE To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014. EXPOSURES One or more variants designated as pathogenic in SCN5A or KCNH2. MAIN OUTCOMES AND MEASURES Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review. RESULTS Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13%; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds. CONCLUSIONS AND RELEVANCE Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.


American Journal of Human Genetics | 2014

Pathogenic Variants for Mendelian and Complex Traits in Exomes of 6,517 European and African Americans: Implications for the Return of Incidental Results

Holly K. Tabor; Paul L. Auer; Seema M. Jamal; Jessica X. Chong; Joon-Ho Yu; Adam S. Gordon; Timothy A. Graubert; Christopher J. O’Donnell; Stephen S. Rich; Deborah A. Nickerson; Michael J. Bamshad

Exome sequencing (ES) is rapidly being deployed for use in clinical settings despite limited empirical data about the number and types of incidental results (with potential clinical utility) that could be offered for return to an individual. We analyzed deidentified ES data from 6,517 participants (2,204 African Americans and 4,313 European Americans) from the National Heart, Lung, and Blood Institute Exome Sequencing Project. We characterized the frequencies of pathogenic alleles in genes underlying Mendelian conditions commonly assessed by newborn-screening (NBS, n = 39) programs, genes associated with age-related macular degeneration (ARMD, n = 17), and genes known to influence drug response (PGx, n = 14). From these 70 genes, we identified 10,789 variants and curated them by manual review of OMIM, HGMD, locus-specific databases, or primary literature to a total of 399 validated pathogenic variants. The mean number of risk alleles per individual was 15.3. Every individual had at least five known PGx alleles, 99% of individuals had at least one ARMD risk allele, and 45% of individuals were carriers for at least one pathogenic NBS allele. The carrier burden for severe recessive childhood disorders was 0.57. Our results demonstrate that risk alleles of potential clinical utility for both Mendelian and complex traits are detectable in every individual. These findings highlight the necessity of developing guidelines and policies that consider the return of results to all individuals and underscore the need to develop innovative approaches and tools that enable individuals to exercise their choice about the return of incidental results.


Clinical Pharmacology & Therapeutics | 2016

Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network

William S. Bush; David R. Crosslin; A. Owusu-Obeng; John R. Wallace; Berta Almoguera; Melissa A. Basford; Suzette J. Bielinski; David Carrell; John J. Connolly; Dana C. Crawford; Kimberly F. Doheny; Carlos J. Gallego; Adam S. Gordon; Brendan J. Keating; Jacqueline Kirby; Terrie Kitchner; Shannon Manzi; A. R. Mejia; Vivian Pan; Cassandra Perry; Josh F. Peterson; Cynthia A. Prows; James D. Ralston; Stuart A. Scott; Aaron Scrol; Maureen E. Smith; Sarah Stallings; T. Veldhuizen; Wendy A. Wolf; Simona Volpi

Genetic variation can affect drug response in multiple ways, although it remains unclear how rare genetic variants affect drug response. The electronic Medical Records and Genomics (eMERGE) Network, collaborating with the Pharmacogenomics Research Network, began eMERGE‐PGx, a targeted sequencing study to assess genetic variation in 82 pharmacogenes critical for implementation of “precision medicine.” The February 2015 eMERGE‐PGx data release includes sequence‐derived data from ∼5,000 clinical subjects. We present the variant frequency spectrum categorized by variant type, ancestry, and predicted function. We found 95.12% of genes have variants with a scaled Combined Annotation‐Dependent Depletion score above 20, and 96.19% of all samples had one or more Clinical Pharmacogenetics Implementation Consortium Level A actionable variants. These data highlight the distribution and scope of genetic variation in relevant pharmacogenes, identifying challenges associated with implementing clinical sequencing for drug treatment at a broader level, underscoring the importance for multifaceted research in the execution of precision medicine.


Anesthesiology | 2013

Exome sequencing reveals novel rare variants in the ryanodine receptor and calcium channel genes in malignant hyperthermia families.

Jerry H. Kim; Gail P. Jarvik; Brian L. Browning; Ramakrishnan Rajagopalan; Adam S. Gordon; Mark J. Rieder; Peggy D. Robertson; Deborah A. Nickerson; Nickla Fisher; P.M. Hopkins

Background: About half of malignant hyperthermia (MH) cases are associated with skeletal muscle ryanodine receptor 1 (RYR1) and calcium channel, voltage-dependent, L type, &agr;1S subunit (CACNA1S) gene mutations, leaving many with an unknown cause. The authors chose to apply a sequencing approach to uncover causal variants in unknown cases. Sequencing the exome, the protein-coding region of the genome, has power at low sample sizes and identified the cause of over a dozen Mendelian disorders. Methods: The authors considered four families with multiple MH cases lacking mutations in RYR1 and CACNA1S by Sanger sequencing of complementary DNA. Exome sequencing in two affecteds per family, chosen for maximum genetic distance, were compared. Variants were ranked by allele frequency, protein change, and measures of conservation among mammals to assess likelihood of causation. Finally, putative pathogenic mutations were genotyped in other family members to verify cosegregation with MH. Results: Exome sequencing revealed one rare RYR1 nonsynonymous variant in each of three families (Asp1056His, Val2627Met, Val4234Leu), and one CACNA1S variant (Thr1009Lys) in the fourth family. These were not seen in variant databases or in our control population sample of 5,379 exomes. Follow-up sequencing in other family members verified cosegregation of alleles with MH. Conclusions: The authors found that using both exome sequencing and allele frequency data from large sequencing efforts may aid genetic diagnosis of MH. In a sample selected by the authors, this technique was more sensitive for variant detection in known genes than Sanger sequencing of complementary DNA, and allows for the possibility of novel gene discovery.


Pharmacogenetics and Genomics | 2013

Pharmacogenetics in American Indian populations: analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes.

Alison E. Fohner; LeeAnna I. Muzquiz; Melissa A. Austin; Andrea Gaedigk; Adam S. Gordon; Timothy A. Thornton; Mark J. Rieder; Mark A. Pershouse; Elizabeth A. Putnam; Kevin Howlett; Patrick Beatty; Kenneth E. Thummel; Erica L. Woodahl

Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT individuals and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT individuals. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9, and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusion These results highlight the importance of carrying out pharmacogenomic research in AI/AN populations and show that extrapolation from other populations is not appropriate. This information could help optimize drug therapy for the CSKT population.


Pharmacogenetics and Genomics | 2016

PGRNseq: a targeted capture sequencing panel for pharmacogenetic research and implementation.

Adam S. Gordon; Robert S. Fulton; Xiang Qin; Elaine R. Mardis; Deborah A. Nickerson; Steve Scherer

Objectives Although the costs associated with whole-genome and whole-exome next-generation sequencing continue to decline, they remain prohibitively expensive for large-scale studies of genetic variation. As an alternative, custom-target sequencing has become a common methodology on the basis of its favorable balance between cost, throughput, and deep coverage. Methods We have developed PGRNseq, a custom-capture panel of 84 genes with associations to pharmacogenetic phenotypes, as a tool to explore the relationship between drug response and genetic variation, both common and rare. We utilized a set of 32 diverse HapMap trios and two clinical cohorts to assess platform performance, accuracy, and ability to discover novel variation. Results We found that PGRNseq generates ultra-deep coverage data (mean=496x) that are over 99.8% concordant with orthogonal datasets. In addition, in our testing sets, PGRNseq identified many novel, rare variants of interest, underscoring its value in both research and clinical settings. Conclusion PGRNseq is an ideal platform for carrying out sequencing-based analyses of pharmacogenetic variation in large cohorts. In addition, the high accuracy associated with genotypes from PGRNseq highlight its utility as a clinical test.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2014

Refining the Structure and Content of Clinical Genomic Reports

Michael O. Dorschner; Laura M. Amendola; Brian H. Shirts; Lesli Kiedrowski; Joseph Salama; Adam S. Gordon; Stephanie M. Fullerton; Peter Tarczy-Hornoch; Peter H. Byers; Gail P. Jarvik

To effectively articulate the results of exome and genome sequencing we refined the structure and content of molecular test reports. To communicate results of a randomized control trial aimed at the evaluation of exome sequencing for clinical medicine, we developed a structured narrative report. With feedback from genetics and non‐genetics professionals, we developed separate indication‐specific and incidental findings reports. Standard test report elements were supplemented with research study‐specific language, which highlighted the limitations of exome sequencing and provided detailed, structured results, and interpretations. The report format we developed to communicate research results can easily be transformed for clinical use by removal of research‐specific statements and disclaimers. The development of clinical reports for exome sequencing has shown that accurate and open communication between the clinician and laboratory is ideally an ongoing process to address the increasing complexity of molecular genetic testing.


Journal of Lipid Research | 2014

Rare coding variation in paraoxonase-1 is associated with ischemic stroke in the NHLBI Exome Sequencing Project

Daniel Seung Kim; David R. Crosslin; Paul L. Auer; Stephanie M. Suzuki; Judit Marsillach; Amber A. Burt; Adam S. Gordon; James F. Meschia; Michael A. Nalls; Bradford B. Worrall; W. T. Longstreth; Rebecca F. Gottesman; Clement E. Furlong; Ulrike Peters; Stephen S. Rich; Deborah A. Nickerson; Gail P. Jarvik

HDL-associated paraoxonase-1 (PON1) is an enzyme whose activity is associated with cerebrovascular disease. Common PON1 genetic variants have not been consistently associated with cerebrovascular disease. Rare coding variation that likely alters PON1 enzyme function may be more strongly associated with stroke. The National Heart, Lung, and Blood Institute Exome Sequencing Project sequenced the coding regions (exomes) of the genome for heart, lung, and blood-related phenotypes (including ischemic stroke). In this sample of 4,204 unrelated participants, 496 had verified, noncardioembolic ischemic stroke. After filtering, 28 nonsynonymous PON1 variants were identified. Analysis with the sequence kernel association test, adjusted for covariates, identified significant associations between PON1 variants and ischemic stroke (P = 3.01 × 10−3). Stratified analyses demonstrated a stronger association of PON1 variants with ischemic stroke in African ancestry (AA) participants (P = 5.03 × 10−3). Ethnic differences in the association between PON1 variants with stroke could be due to the effects of PON1Val109Ile (overall P = 7.88 × 10−3; AA P = 6.52 × 10−4), found at higher frequency in AA participants (1.16% vs. 0.02%) and whose protein is less stable than the common allele. In summary, rare genetic variation in PON1 was associated with ischemic stroke, with stronger associations identified in those of AA. Increased focus on PON1 enzyme function and its role in cerebrovascular disease is warranted.


Pharmacogenetics and Genomics | 2015

Variation in genes controlling warfarin disposition and response in American Indian and Alaska Native people: CYP2C9, VKORC1, CYP4F2, CYP4F11, GGCX.

Alison E. Fohner; Renee Robinson; Joseph Yracheta; Denise A. Dillard; Brian Schilling; Burhan A. Khan; Scarlett E. Hopkins; Bert B. Boyer; Jynene Black; Howard W. Wiener; Hemant K. Tiwari; Adam S. Gordon; Deborah A. Nickerson; Jesse Tsai; Federico M. Farin; Timothy A. Thornton; Allan E. Rettie; Kenneth E. Thummel

Objectives Pharmacogenetic testing is projected to improve health outcomes and reduce the cost of care by increasing therapeutic efficacy and minimizing drug toxicity. American Indian and Alaska Native (AI/AN) people historically have been excluded from pharmacogenetic research and its potential benefits, a deficiency we sought to address. The vitamin K antagonist warfarin is prescribed for prevention of thromboembolic events, although its narrow therapeutic index and wide interindividual variability necessitate close monitoring of drug response. Therefore, we were interested in variation in CYP2C9, VKORC1, CYP4F2, CYP4F11, and GGCX, which encode enzymes important for the activity of warfarin and synthesis of vitamin K-dependent blood clotting factors. Methods We resequenced these genes in 188 AI/AN people in partnership with Southcentral Foundation in Anchorage, Alaska and 94 Yup’ik people living in the Yukon-Kuskokwim Delta of southwest Alaska to identify known or novel function-disrupting variation. We conducted genotyping for specific single nucleotide polymorphisms in larger cohorts of each study population (380 and 350, respectively). Results We identified high frequencies of the lower-warfarin dose VKORC1 haplotype (−1639G>A and 1173C>T) and the higher-warfarin dose CYP4F2*3 variant. We also identified two relatively common, novel, and potentially function-disrupting variants in CYP2C9 (M1L and N218I), which, along with CYP2C9*3, CYP2C9*2, and CYP2C9*29, predict that a significant proportion of AI/AN people will have decreased CYP2C9 activity. Conclusion Overall, we predict a lower average warfarin dose requirement in AI/AN populations in Alaska than that seen in non-AI/AN populations of the USA, a finding consistent with clinical experience in Alaska.

Collaboration


Dive into the Adam S. Gordon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gail P. Jarvik

University of Washington Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric B. Larson

University of Washington Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berta Almoguera

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge