Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam S. Hamlin is active.

Publication


Featured researches published by Adam S. Hamlin.


Neuroscience | 2007

The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking

Adam S. Hamlin; Jill M. Newby; Gavan P. McNally

We used an ABA renewal design to study the neural correlates, and role of D1 dopamine receptors, in contextual control over extinguished alcohol-seeking. Rats were trained to respond for 4% beer in one context (A), extinguished in a different (B) context, and then tested for responding in the original training context (A) or the extinction context (B). ABA renewal was mediated by D1 dopamine receptors because it was prevented by SCH23390. ABA renewal of alcohol-seeking was associated with selective increases in c-Fos protein induction in basolateral amygdala, ventral accumbens shell, and lateral hypothalamus (renewal-associated Fos). By contrast, being tested was associated with increased c-Fos induction in anterior cingulate, prelimbic and infralimbic cortex, rostral agranular insula, dorsomedial accumbens shell, and accumbens core (test-associated Fos). Renewal-associated Fos in ventral accumbens shell and lateral hypothalamus, but not basolateral amygdala, was D1 dopamine receptor dependent. Double immunofluorescence showed that renewal-associated Fos was expressed in orexin-negative lateral hypothalamic neurons. However, c-Fos induction in either lateral hypothalamic orexin-negative or orexin-positive neurons was positively and significantly correlated with alcohol-seeking. Test-associated c-Fos induction was observed in orexin-positive perifornical neurons. In both regions, c-Fos expression was dependent on D1 dopamine receptors. These results suggest that renewal of extinguished alcohol-seeking depends on a distributed neural circuit involving basolateral amygdala, ventral accumbens shell, and lateral hypothalamus that involves D1 dopamine receptors. Comparison with our previous results [Hamlin AS, Blatchford KE, McNally GP (2006) Renewal of an extinguished instrumental response: Neural correlates and the role of D1 dopamine receptors. Neuroscience 143:25-38] permits identification of similarities and differences in the correlates of renewal of extinguished drug- and natural-reward seeking.


Neuroscience | 2008

Renewal of extinguished cocaine-seeking.

Adam S. Hamlin; Kelly J. Clemens; Gavan P. McNally

Rats were trained to self-administer cocaine in a distinctive context (context A). They were then extinguished in a second context (context B) prior to test for cocaine-seeking in the original training context, context A (group ABA), context B (group ABB) or no test (group AB0). Group ABA showed renewal of extinguished cocaine-seeking associated with c-Fos induction in basolateral amygdala, lateral hypothalamus, and infralimbic prefrontal cortex. Groups ABA and ABB showed test-associated c-Fos induction in prelimbic prefrontal cortex, nucleus accumbens (core, shell, rostral pole), striatum, lateral amygdala, perifornical hypothalamus, and ventral tegmental area. Double immunofluorescence revealed that renewal-associated c-Fos was expressed in orexin-negative lateral hypothalamic neurons whereas test-associated c-Fos was expressed in orexin-positive perifornical hypothalamic neurons. Retrograde tracing from lateral hypothalamus with cholera toxin revealed only sparse dual-labeled neurons in basolateral amygdala and infralimbic prefrontal cortex, suggesting that these regions contribute to renewal of cocaine-seeking independently of their projections to lateral hypothalamus. Retrograde tracing from the ventral tegmental area suggested that hypothalamic contributions to cocaine-seeking are likewise independent of projections to the midbrain. These results suggest that renewal of cocaine-seeking depends critically on basolateral amygdala, lateral hypothalamus, and infralimbic prefrontal cortex. Whereas basolateral amygdala and lateral hypothalamus contributions may be common to renewal of extinguished cocaine-, alcohol-, and sucrose-seeking, infralimbic prefrontal cortex contributions appear unique to renewal of cocaine-seeking and may reflect the habitual nature of relapse to cocaine.


The Journal of Neuroscience | 2009

Fear Extinction across Development: The Involvement of the Medial Prefrontal Cortex as Assessed by Temporary Inactivation and Immunohistochemistry

Jee Hyun Kim; Adam S. Hamlin; Rick Richardson

Extinction in adult animals, including humans, appears to involve the medial prefrontal cortex (mPFC). However, the role of mPFC in extinction across development has not yet been studied. Given several recent demonstrations of developmental differences in extinction of conditioned fear at a behavioral level, different neural circuitries may mediate fear extinction across development. In all experiments, noise conditioned stimulus (CS) and shock unconditioned stimulus (US) were used. In experiment 1A, temporary unilateral inactivation of the mPFC during extinction training impaired long-term extinction the following day in postnatal day 24 (P24) rats but not in P17 rats. In experiment 1B, bilateral inactivation of the mPFC again failed to disrupt long-term extinction in P17 rats. In experiment 2, extinction training increased phosphorylated mitogen-activated protein kinase (pMAPK) in the mPFC for P24 rats but not for P17 rats, whereas rats of both ages displayed elevated pMAPK in the amygdala. Across both ages, “not trained,” “reactivated,” and “no extinction” control groups expressed very low numbers of pMAPK-immunoreactive (IR) neurons across both neural structures. This result indicates that the mere conditioning experience, the exposure to the CS, or the expression of CS-elicited fear in and of itself is not sufficient to explain the observed increase in pMAPK-IR neurons in the mPFC and/or the amygdala after extinction. Together, these findings show that extinction in P17 rats does not involve the mPFC, which has important theoretical and clinical implications for the treatment of anxiety disorders in humans.


European Journal of Neuroscience | 2009

Paraventricular thalamus mediates context-induced reinstatement (renewal) of extinguished reward seeking

Adam S. Hamlin; Kelly J. Clemens; Eun A. Choi; Gavan P. McNally

Paraventricular thalamus (PvTh) is uniquely placed to contribute to reinstatement of drug and reward seeking. It projects extensively to regions implicated in reinstatement including accumbens shell (AcbSh), prefrontal cortex (PFC) and basolateral amygdala (BLA), and receives afferents from other regions important for reinstatement such as lateral hypothalamus. We used complementary neuroanatomical and functional approaches to study the role of PvTh in context‐induced reinstatement (renewal) of extinguished reward‐seeking. Rats were trained to respond for a reward in context A, extinguished in context B and tested in context A or B. We applied the neuronal tracer cholera toxin B subunit (CTb) to AcbSh and examined retrograde‐labelled neurons, c‐Fos immunoreactivity (IR) and dual c‐Fos/CTb labelled neurons in PvTh and other AcbSh afferents. In PvTh there was c‐Fos IR in CTb‐positive neurons associated with renewal showing activation of a PvTh–AcbSh pathway during renewal. In PFC there was little c‐Fos IR in CTb‐positive or negative neurons associated with renewal. In BLA, two distinct patterns of activation and retrograde labelling were observed. In rostral BLA there was significant c‐Fos IR in CTb‐negative neurons associated with renewal. In caudal BLA there was significant c‐Fos IR in CTb‐positive neurons associated with being tested in either the extinction (ABB) or training (ABA) context. We then studied the functional role of PvTh in renewal. Excitotoxic lesions of PvTh prevented renewal. These lesions had no effect on the acquisition of reward seeking. These results show that PvTh mediates context‐induced reinstatement and that this renewal is associated with recruitment of a PvTh–AcbSh pathway.


The Journal of Neuroscience | 2010

Norepinephrine directly activates adult hippocampal precursors via beta3-adrenergic receptors.

D. J. Jhaveri; Eirinn W. Mackay; Adam S. Hamlin; S. V. Marathe; L. S. Nandam; V. A. Vaidya; Perry F. Bartlett

Adult hippocampal neurogenesis is a critical form of cellular plasticity that is greatly influenced by neural activity. Among the neurotransmitters that are widely implicated in regulating this process are serotonin and norepinephrine, levels of which are modulated by stress, depression and clinical antidepressants. However, studies to date have failed to address a direct role for either neurotransmitter in regulating hippocampal precursor activity. Here we show that norepinephrine but not serotonin directly activates self-renewing and multipotent neural precursors, including stem cells, from the hippocampus of adult mice. Mechanistically, we provide evidence that β3-adrenergic receptors, which are preferentially expressed on a Hes5-expressing precursor population in the subgranular zone (SGZ), mediate this norepinephrine-dependent activation. Moreover, intrahippocampal injection of a selective β3-adrenergic receptor agonist in vivo increases the number of proliferating cells in the SGZ. Similarly, systemic injection of the β-adrenergic receptor agonist isoproterenol not only results in enhancement of proliferation in the SGZ but also leads to an increase in the percentage of nestin/glial fibrillary acidic protein double-positive neural precursors in vivo. Finally, using a novel ex vivo “slice-sphere” assay that maintains an intact neurogenic niche, we demonstrate that antidepressants that selectively block the reuptake of norepinephrine, but not serotonin, robustly increase hippocampal precursor activity via β-adrenergic receptors. These findings suggest that the activation of neurogenic precursors and stem cells via β3-adrenergic receptors could be a potent mechanism to increase neuronal production, providing a putative target for the development of novel antidepressants.


The Journal of Neuroscience | 2009

Lateral Hypothalamus Is Required for Context-Induced Reinstatement of Extinguished Reward Seeking

Nathan J. Marchant; Adam S. Hamlin; Gavan P. McNally

We studied the role of lateral hypothalamus (LH) in context-induced reinstatement (renewal) of reward seeking. Rats were trained to respond for 4% (v/v) alcoholic beer or 10% (w/v) sucrose reward in one context (Context A) before extinction training in a second context (Context B). On test, rats were returned to the training context, A (ABA), or the extinction context, B (ABB). Return to the training context (ABA) produced robust reinstatement. Reversible inactivation of LH via baclofen/muscimol infusion prevented context-induced reinstatement of beer and sucrose seeking. This prevention was specific to bilateral infusions into LH. We then used the retrograde neuronal tracer cholera toxin b subunit (CTb) combined with detection of the c-Fos protein to identify activated afferents to LH during context-induced reinstatement of beer seeking. Double labeling for c-Fos and CTb revealed a significant recruitment of LH-projecting neurons in nucleus accumbens shell (AcbSh) during reinstatement. These afferents could be classified into two anatomically and functionally distinct groups. First, afferents in the ventral AcbSh projecting to LH were activated during reinstatement. Second, afferents in the dorsomedial AcbSh projecting to LH were activated during test in the extinction context. These recruitments were specific to an AcbSh–LH pathway because they were not observed following CTb injection into the immediately adjacent perifornical hypothalamus. These results show that LH is critical for context-induced reinstatement of reward seeking and that parallel striatal-hypothalamic pathways are recruited following return to the training versus extinction contexts.


Neuroscience | 2006

Renewal of an extinguished instrumental response: neural correlates and the role of D1 dopamine receptors.

Adam S. Hamlin; Kate E. Blatchford; Gavan P. McNally

Contexts play an important role in controlling the expression of extinguished behaviors. We used an ABA renewal design to study the neural correlates, and role of D1 dopamine receptors, in contextual control over extinguished instrumental responding. Rats were trained to respond for a sucrose reward in one context (A). Responding was then extinguished in the same (A) or different (B) context. Rats were tested for responding in the original training context (A). Return to the original training context after extinction (group ABA) was associated with a return of responding. Three distinct patterns of Fos induction were detected on test: 1) ABA renewal was associated with selective increases in c-Fos protein induction in basolateral amygdala, ventral accumbens shell, and lateral hypothalamus (but not in orexin- or melanin-concentrating hormone (MCH)-hypothalamic neurons); 2) being placed in the same context as extinction training (AAA or ABB) was associated with a selective decrease in c-Fos induction in rostral agranular insular cortex; 3) being placed in any context on test was associated with the up-regulation of c-Fos induction in anterior cingulate, dorsomedial accumbens shell, accumbens core, lateral septum, and substantia nigra. The return of responding in ABA renewal was prevented by pre-treatment with the D1 dopamine receptor antagonist SCH23390 (10 microg/kg; s.c.). SCH23390 also suppressed basal and renewal-associated c-Fos protein induction throughout accumbens, and, selectively suppressed renewal-associated c-Fos induction in lateral hypothalamus. These results suggest that renewal of extinguished responding for a sucrose reward depends on a distributed neural circuit involving basolateral amygdala, ventral accumbens shell, and lateral hypothalamus. D1 dopamine receptors within this circuit are essential for renewal. The results also suggest that rostral agranular insular cortex may play an important role in suppressing reward-seeking after extinction training.


PLOS ONE | 2012

Prolactin Stimulates Precursor Cells in the Adult Mouse Hippocampus

Tara L. Walker; Jana Vukovic; Margaretha M. Koudijs; Daniel G. Blackmore; Eirinn W. Mackay; Alex M. Sykes; Rupert W. Overall; Adam S. Hamlin; Perry F. Bartlett

In the search for ways to combat degenerative neurological disorders, neurogenesis-stimulating factors are proving to be a promising area of research. In this study, we show that the hormonal factor prolactin (PRL) can activate a pool of latent precursor cells in the adult mouse hippocampus. Using an in vitro neurosphere assay, we found that the addition of exogenous PRL to primary adult hippocampal cells resulted in an approximate 50% increase in neurosphere number. In addition, direct infusion of PRL into the adult dentate gyrus also resulted in a significant increase in neurosphere number. Together these data indicate that exogenous PRL can increase hippocampal precursor numbers both in vitro and in vivo. Conversely, PRL null mice showed a significant reduction (approximately 80%) in the number of hippocampal-derived neurospheres. Interestingly, no deficit in precursor proliferation was observed in vivo, indicating that in this situation other niche factors can compensate for a loss in PRL. The PRL loss resulted in learning and memory deficits in the PRL null mice, as indicated by significant deficits in the standard behavioral tests requiring input from the hippocampus. This behavioral deficit was rescued by direct infusion of recombinant PRL into the hippocampus, indicating that a lack of PRL in the adult mouse hippocampus can be correlated with impaired learning and memory.


The Neuroscientist | 2009

The Role of the p75 Neurotrophin Receptor in Cholinergic Dysfunction in Alzheimer's Disease:

Elizabeth J. Coulson; Linda May; Alex M. Sykes; Adam S. Hamlin

Degeneration of basal forebrain cholinergic neurons is a common feature of Alzheimers disease and is proposed to be an early and key event in the conditions etiology. This review discusses recent findings that strongly link the p75 neurotrophin receptor (p75 NTR) to both cholinergic neuron degeneration and the production of toxic forms of amyloid-beta (Aß), which is found deposited as amyloid plaques in the brains of Alzheimers disease patients. Although elucidating the underlying molecular mechanisms and the clinical significance of these findings will require further experimentation, a number of possible scenarios and future research directions are presented.


Behavioral Neuroscience | 2010

The Role of Prefrontal Cortex in Predictive Fear Learning

Teri M. Furlong; Sindy Cole; Adam S. Hamlin; Gavan P. McNally

Pavlovian fear conditioning depends on prediction error, or the discrepancy between actual and expected outcomes. We used immunohistochemistry, neuronal tract tracing, and reversible inactivation to study the role of prefrontal cortex and thalamocortical pathways in predictive fear learning. Unexpected, but not expected, conditioned stimulus (CS)-unconditioned stimulus (US) presentations caused increased c-Fos expression in the prefrontal cortex (PFC), midline thalamus, lateral amygdala, as well as retrograde labeled midline thalamic afferents to PFC. Reversible inactivation of dorsomedial PFC, but not infralimbic PFC, prevented the associative blocking of fear learning. These results suggest a role for dorsomedial PFC (dmPFC), and a thalamic → dmPFC pathway, in signaling whether or not aversive events are expected or unexpected and so whether they are to be learned about.

Collaboration


Dive into the Adam S. Hamlin's collaboration.

Top Co-Authors

Avatar

Gavan P. McNally

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jessica Rose

Charles Sturt University

View shared research outputs
Top Co-Authors

Avatar

K. M. Buller

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge