Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Sheppard is active.

Publication


Featured researches published by Adam Sheppard.


Aging (Albany NY) | 2016

N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

Dalian Ding; Haiyan Jiang; Guang-Di Chen; Chantal M. Longo-Guess; Vijaya Prakash Krishnan Muthaiah; Cong Tian; Adam Sheppard; Richard Salvi; Kenneth R. Johnson

Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.


Hearing Research | 2014

Prolonged noise exposure-induced auditory threshold shifts in rats

Guang-Di Chen; Brandon Decker; Vijaya Prakash Krishnan Muthaiah; Adam Sheppard; Richard Salvi

Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas.


Neuroscience | 2016

Noise trauma induced plastic changes in brain regions outside the classical auditory pathway.

Guang-Di Chen; Adam Sheppard; Richard Salvi

The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC) in rats. High-frequency octave band noise (10-20 kHz) and narrow band noise (16-20 kHz) induced permanent threshold shifts at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time-dependent manner and the changes appeared to be related to the severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high-frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration.


Neuroscience | 2017

Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats

Adam Sheppard; Guang-Di Chen; Senthilvelan Manohar; Dalian Ding; Bo Hua Hu; Wei Sun; Jiwei Zhao; Richard Salvi

Prolonged low-level noise exposure alters loudness perception in humans, presumably by decreasing the gain of the central auditory system. Here we test the central gain hypothesis by measuring the acute and chronic physiologic changes at the level of the cochlea and inferior colliculus (IC) after a 75-dB SPL, 10-20-kHz noise exposure for 5weeks. The compound action potential (CAP) and summating potential (SP) were used to assess the functional status of the cochlea and 16 channel electrodes were used to measure the local field potentials (LFP) and multi-unit spike discharge rates (SDR) from the IC immediately after and one-week post-exposure. Measurements obtained immediately post-exposure demonstrated a significant reduction in supra-threshold CAP amplitudes. In contrast to the periphery, sound-evoked activity in the IC was enhanced in a frequency-dependent manner consistent with models of enhanced central gain. Surprisingly, one-week post-exposure supra-threshold responses from the cochlea had not only recovered, but were significantly larger than normal, and thresholds were significantly better than controls. Moreover, sound-evoked hyperactivity in the IC was sustained within the noise exposure frequency band but suppressed at higher frequencies. When response amplitudes representing the neural output of the cochlea and IC activity at one-week post exposure were compared with control animal responses, a central attenuation phenomenon becomes evident, which may play a key role in understanding why low-level noise can sometimes ameliorate tinnitus and hyperacusis percepts.


Neuroscience Letters | 2018

Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure

Adam Sheppard; Xiaopeng Liu; Dalian Ding; Richard Salvi

Remarkably, the central auditory system can modify the strength of its sound-evoked neural response based on prior acoustic experiences, a phenomenon referred to as central gain. Gain changes are well documented following traumatic noise exposure, but much less is known about central gain dynamics following prolonged exposure to low-level noise, a common acoustic experience in many urban and work environments. We recently reported that the neural output of the cochlea is reduced, while gain was enhanced in the inferior colliculus (IC) following a 5-week exposure to 75 dB noise. To determine if similar effects were present at even lower intensities, we exposed rats to a 65 dB noise expecting to see little to no change in the cochlea or IC. The exposure had little effect on distortion product otoacoustic emissions and did not cause any hair cell loss. However, the amplitude of the CAP, which reflects the neural output of cochlea, was depressed by 50-75%. Surprisingly, neural responses from the IC were enhanced up to 70%, mainly at frequencies within the noise exposure band. One-week post-exposure, CAP amplitudes returned to normal at frequencies within or above the exposure band, whereas responses evoked by frequencies below the exposure band were enhanced by more than 80%. In contrast, IC responses below the exposure frequency were depressed 10-20% whereas responses within the exposure frequency band were enhanced 10-20%. Thus, the central auditory system dynamically up- and down-regulates its gain to maintain supra-threshold neural responses within a narrow homeostatic range; a function that likely contributes to the prevention of sounds from being perceived as muffled or too loud.


Journal of otology | 2018

Isoflurane anesthesia suppresses distortion product otoacoustic emissions in rats

Adam Sheppard; Deng-Ling Zhao; Richard Salvi

A commonly used anesthetic, isoflurane, can impair auditory function in a dose-dependent manner. However, in rats, isoflurane-induced auditory impairments have only been assessed with auditory brainstem responses; a measure which is unable to distinguish if changes originate from the central or peripheral auditory system. Studies performed in other species, such as mice and guinea-pigs, suggests auditory impairment stems from disrupted OHC amplification. Despite the wide use of the rat in auditory research, these observations have yet to be replicated in the rat animal model. This study used distortion product otoacoustic emissions to assess outer hair cell function in rats that were anesthetized with either isoflurane or a ketamine/xylazine cocktail for approximately 45 min. Results indicate that isoflurane can significantly reduce DPOAE amplitudes compared to ketamine/xylazine, and that responses were more variable with isoflurane than ketamine/xylazine over the 45-min test period. Based on these observations, isoflurane should be used with caution when assessing peripheral auditory function to avoid potentially confounding effects.


Hearing Research | 2018

Prolonged low-level noise exposure reduces rat distortion product otoacoustic emissions above a critical level

Deng-Ling Zhao; Adam Sheppard; Massimo Ralli; Xiaopeng Liu; Richard Salvi

ABSTRACT Prolonged noise exposures presented at low to moderate intensities are often used to investigate neuroplastic changes in the central auditory pathway. A common assumption in many studies is that central auditory changes occur independent of any hearing loss or cochlear dysfunction. Since hearing loss from a long term noise exposure can only occur if the level of the noise exceeds a critical level, prolonged noise exposures that incrementally increase in intensity can be used to determine the critical level for any given species and noise spectrum. Here we used distortion product otoacoustic emissions (DPOAEs) to determine the critical level in male, inbred Sprague‐Dawley rats exposed to a 16–20 kHz noise that increased from 45 to 92 dB SPL in 8 dB increments. DPOAE amplitudes were largely unaffected by noise presented at 60 dB SPL and below. However, DPOAEs within and above the frequency band of the exposures declined rapidly at noise intensities presented at 68 dB SPL and above. The largest and most rapid decline in DPOAE amplitude occurred at 30 kHz, nearly an octave above the 16–20 kHz exposure band. The rate of decline in DPOAE amplitude was 0.54 for every 1 dB increase in noise intensity. Using a linear regression calculation, the estimated critical level for 16–20 kHz noise was remarkably low, approximately 60 dB SPL. These results indicate that long duration, 16–20 kHz noise exposures in the 65–70 dB SPL range likely affect the cochlea and central auditory system of male Sprague‐Dawley rats. HighlightsSprague Dawley rats express a remarkably low critical intensity level.Prolonged low‐level noise exposures cause detrimental cochlear function.Incrementally enhancing noise can be helpful in distinguishing DPOAE critical intensity levels.


Acta Otorhinolaryngologica Italica | 2014

Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology

Adam Sheppard; Sarah H. Hayes; Guang-Di Chen; Massimo Ralli; Richard Salvi


Hearing Research | 2015

Potassium ion channel openers, Maxipost and Retigabine, protect against peripheral salicylate ototoxicity in rats.

Adam Sheppard; Guang-Di Chen; Richard Salvi


The Hearing journal | 2018

MRI Noise and Hearing Loss

Adam Sheppard; Yu-Chen Chen; Richard Salvi

Collaboration


Dive into the Adam Sheppard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Hua Hu

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cong Tian

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge