Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Swiercz is active.

Publication


Featured researches published by Adam Swiercz.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Plastics and cardiovascular health: phthalates may disrupt heart rate variability and cardiovascular reactivity

Rafael Jaimes; Adam Swiercz; Meredith Sherman; Narine Muselimyan; Paul J. Marvar; Nikki Gillum Posnack

Plastics have revolutionized medical device technology, transformed hematological care, and facilitated modern cardiology procedures. Despite these advances, studies have shown that phthalate chemicals migrate out of plastic products and that these chemicals are bioactive. Recent epidemiological and research studies have suggested that phthalate exposure adversely affects cardiovascular function. Our objective was to assess the safety and biocompatibility of phthalate chemicals and resolve the impact on cardiovascular and autonomic physiology. Adult mice were implanted with radiofrequency transmitters to monitor heart rate variability, blood pressure, and autonomic regulation in response to di-2-ethylhexyl-phthalate (DEHP) exposure. DEHP-treated animals displayed a decrease in heart rate variability (-17% SD of normal beat-to-beat intervals and -36% high-frequency power) and an exaggerated mean arterial pressure response to ganglionic blockade (31.5% via chlorisondamine). In response to a conditioned stressor, DEHP-treated animals displayed enhanced cardiovascular reactivity (-56% SD major axis Poincarè plot) and prolonged blood pressure recovery. Alterations in cardiac gene expression of endothelin-1, angiotensin-converting enzyme, and nitric oxide synthase may partly explain these cardiovascular alterations. This is the first study to show an association between phthalate chemicals that are used in medical devices with alterations in autonomic regulation, heart rate variability, and cardiovascular reactivity. Because changes in autonomic balance often precede clinical manifestations of hypertension, atherosclerosis, and conduction abnormalities, future studies are warranted to assess the downstream impact of plastic chemical exposure on end-organ function in sensitive patient populations. This study also highlights the importance of adopting safer biomaterials, chemicals, and/or surface coatings for use in medical devices.NEW & NOTEWORTHY Phthalates are widely used in the manufacturing of consumer and medical products. In the present study, di-2-ethylhexyl-phthalate exposure was associated with alterations in heart rate variability and cardiovascular reactivity. This highlights the importance of investigating the impact of phthalates on health and identifying suitable alternatives for medical device manufacturing.


Psychoneuroendocrinology | 2018

A peripheral immune response to remembering trauma contributes to the maintenance of fear memory in mice

Matthew B. Young; Leonard L. Howell; Lauren Hopkins; Cassandra Moshfegh; Zhe Yu; Lauren Clubb; Jessica Seidenberg; Jeanie Park; Adam Swiercz; Paul J. Marvar

Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired.


Frontiers in Behavioral Neuroscience | 2018

Extinction of Fear Memory Improves Conditioned Cardiovascular Fear Reactivity in Mouse and Human

Paul J. Marvar; Adam Swiercz; Antonia V. Seligowski; Tanja Jovanovic; Kerry J. Ressler; Jeanie Park

Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD–CVD comorbidity outcomes.


Archive | 2016

Impaired Autonomic Regulation in Posttraumatic Stress Disorder

Adam Swiercz; Jeanie Park; Cassandra Moshfegh; Jan Wiaderkiewicz; Colin N. Young; Paul J. Marvar


Archive | 2018

Extinction of Blood Pressure and Heart Rate Responses to Conditioned Fear

Adam Swiercz; Jeanie Park; Colin N. Young; Paul J. Marvar


Archive | 2018

Activation of Angiotensin type 2 Receptor (AT2R) Contributes to Fear Memory

Zhe Yu; Adam Swiercz; Lauren Hopkins; Eric Krause; Paul J. Marvar


Archive | 2017

Central Angiotensin Type 2 Receptor (AT2R) Stimulation Promotes Enhanced Extinction of Fear Learning Independent of Cardiovascular Measures

Adam Swiercz; Jan Wiaderkiewicz; Cassandra Moshfegh; Lauren Hopkins; Paul J. Marvar


The FASEB Journal | 2016

Effects of Essential Oil on Fear Memory and the Immune Response; A Potential Alternative Therapy for Post-Traumatic Stress Disorder (PSTD)

Cassandra Moshfegh; Lauren Hopkins; Adam Swiercz; Chansol Hurr; Colin N. Young; Paul J. Marvar


Proceedings of The Physiological Society | 2016

Effects of angiotensin II receptor type 2 (AT2R) modulation on fear memory in a mouse model of Posttraumatic Stress Disorder (PTSD)

Paul J. Marvar; Adam Swiercz; Jan Wiaderkiewicz; Lauren Hopkins; Cassandra Moshfegh


Archive | 2016

Exposure to Di-2-Ethylhexylphthalate Affects Blood Pressure and Electrocardiograms in Mice.

Meredith Sherman; Adam Swiercz; Narine Muselimyan; Luther M. Swift; Paul J. Marvar; Nikki Gillum Posnack

Collaboration


Dive into the Adam Swiercz's collaboration.

Top Co-Authors

Avatar

Paul J. Marvar

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Lauren Hopkins

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Cassandra Moshfegh

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Wiaderkiewicz

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Narine Muselimyan

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Nikki Gillum Posnack

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Zhe Yu

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Amishi Desai

George Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge