Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adam Zweifach is active.

Publication


Featured researches published by Adam Zweifach.


Immunological Reviews | 2009

Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis.

Arun T. Pores-Fernando; Adam Zweifach

Summary:  Cytotoxic T lymphocytes (CTLs) kill targets by releasing cytotoxic agents from lytic granules. Killing is a multi‐step process. The CTL adheres to a target, allowing its T‐cell receptors to recognize antigen. This triggers a signal transduction cascade that leads to the polarization of the microtubule cytoskeleton and granules towards the target, followed by exocytosis that occurs specifically at the site of contact. As with cytokine production by helper T cells (Th cells), target cell killing is absolutely dependent on Ca2+ influx, which is involved in regulating both reorientation and release. Current evidence suggests that Ca2+ influx in CTLs, as in Th cells, occurs via depletion‐activated channels. The molecules that couple increases in Ca2+ to reorientation are unknown. The Ca2+/calmodulin‐dependent phosphatase calcineurin, which plays a critical role in cytokine production by Th cells, is also involved in lytic granule exocytosis, although the relevant substrates remain to be identified and calcineurin activation is only one Ca2+ ‐dependent step involved. There are thus striking similarities and important differences between Ca2+ signals in Th cells and CTLs, illustrating how cells can use similar signal transduction pathways to generate different functional outcomes.


BMC Immunology | 2016

Metallothionein regulates intracellular zinc signaling during CD4 + T cell activation

James M. Rice; Adam Zweifach; Michael A. Lynes

BackgroundThe ultra-low redox potential and zinc binding properties of the intracellular pool of mammalian metallothioneins (MT) suggest a role for MT in the transduction of redox signals into intracellular zinc signals. Increased expression of MT after exposure to heavy metals, oxidative stress, or inflammatory cytokines leads to an increased intracellular redox-mobilizable zinc pool that can affect downstream zinc-sensitive signaling pathways. CD4+ T helper cells are poised to be influenced by MT transduced zinc signaling because they produce intracellular reactive oxygen species following activation through the T cell receptor and are sensitive to small changes in intracellular [Zn2+].ResultsMT expression and intracellular [Zn2+] are both increased during primary activation and expansion of naïve CD4+ T cells into the Tr1 phenotype in vitro. When Tr1 cells from wildtype mice are compared with congenic mice lacking functional Mt1 and Mt2 genes, the expression of intracellular MT is associated with a greater increase in intracellular [Zn2+] immediately following exposure to reactive oxygen species or upon restimulation through the T cell receptor. The release of Zn2+ from MT is associated with a greater increase in p38 MAPK activation following restimulation and decreased p38 MAPK activation in MT knockout Tr1 cells can be rescued by increasing intracellular [Zn2+]. Additionally, IL-10 secretion is increased in MT knockout Tr1 cells compared with wildtype controls and this increase is prevented when the intracellular [Zn2+] is increased experimentally.ConclusionsDifferences in zinc signaling associated with MT expression appear to be a result of preferential oxidation of MT and concomitant release of Zn2+. Although zinc is released from many proteins following oxidation, release is greater when the cell contains an intracellular pool of MT. By expressing MT in response to certain environmental conditions, CD4+ T cells are able to more efficiently release intracellular zinc and regulate signaling pathways following stimulation. The link between MT expression and increased zinc signaling following activation represents an important immunomodulatory mechanism of MT and illuminates the complex role MT plays in shaping immune responses.


Cellular Immunology | 2009

Calcineurin dependent lytic granule exocytosis in NK-92 Natural Killer cells

Arun T. Pores-Fernando; Surabhi Gaur; Michelle Y. Doyon; Adam Zweifach

Cytotoxic T cells (CTLs) and natural killer cells (NKs) both kill virus-infected cells and tumor cells by releasing the cytoxic contents of their lytic granules. We recently demonstrated a role for calcineurin in lytic granule exocytosis in TALL-104 human leukemic CTLs [M.J. Grybko, J.P. Bartnik, G.A. Wurth, A.T. Pores-Fernando, A. Zweifach, Calcineurin activation is only one calcium-dependent step in cytotoxic T lymphocyte granule exocytosis, J. Biol. Chem. 282 (2007) 18009-18017]. However, whether calcineurin plays a similar role in NK lytic granule release is not known. We tested whether calcineurin is involved in lytic granule exocytosis in human leukemic NK-92 cells using immunosuppressive drugs that block calcineurin function and by overexpressing a constitutively active calcineurin fusion protein. Our results indicate that calcineurin does play a role in lytic granule exocytosis in NK-92 cells, and suggest that, as was the case in TALL-104 cells, there are likely to be multiple calcium-dependent steps.


Journal of Biomolecular Screening | 2013

Flow cytometry enables a high-throughput homogeneous fluorescent antibody-binding assay for cytotoxic T cell lytic granule exocytosis.

Amy E. Florian; Christopher K. Lepensky; Ohyun Kwon; Mark K. Haynes; Larry A. Sklar; Adam Zweifach

We developed a homogeneous phenotypic fluorescence end-point assay for cytotoxic T lymphocyte lytic granule exocytosis. This flow cytometric assay measures binding of an antibody to a luminal epitope of a lysosomal membrane protein (LAMP-1) that is exposed by exocytosis to the extracellular solution. Washing to remove unbound antibody is not required. Confirming the assay’s ability to detect novel active compounds, we screened at a concentration of 50 µM a synthetic diversity library of 91 compounds in a 96-well plate format, identifying 17 compounds that blocked by 90% or more. The actions of six structurally related tetracyano-hexahydroisoindole compounds that inhibited by ~90% at a concentration of 10 µM were investigated further. Four reduced elevations in intracellular Ca2+; it is likely that depolarization of the cells’ membrane potential underlies the effect for at least two of the compounds. Another compound was found to be a potent inhibitor of the activation of the mitogen-activated protein (MAP) kinase ERK. Finally, we transferred the assay to a 384-well format and screened the Prestwick Compound Library using high-throughput flow cytometry. Our results indicate that our assay will likely be a useful means of screening libraries for novel compounds with important biological activities.


Journal of Biomolecular Screening | 2015

A High Throughput Phenotypic Screen of Cytotoxic T Lymphocyte Lytic Granule Exocytosis Reveals Candidate Immunosuppressants

Ziyan Zhao; Mark K. Haynes; Oleg Ursu; Bruce S. Edwards; Larry A. Sklar; Adam Zweifach

We screened the National Institutes of Health’s Molecular Libraries Small Molecule Repository for inhibitors of cytotoxic T lymphocyte (CTL) lytic granule exocytosis by measuring binding of an antibody in the extracellular solution to a lysosomal membrane protein (LAMP-1) that is transferred to the plasma membrane by exocytosis. We used TALL-104 human leukemic CTLs stimulated with soluble chemicals. Using high-throughput cluster cytometry to screen 364,202 compounds in a 1536-well plate format, we identified 2404 initial hits: 161 were confirmed on retesting, and dose–response measurements were performed. Seventy-five of those compounds were obtained, and 48 were confirmed active. Experiments were conducted to determine the molecular mechanism of action (MMOA) of the active compounds. Fifteen blocked increases in intracellular calcium >50%. Seven blocked phosphorylation of extracellular signal-regulated kinase (ERK) by upstream mitogen-activated protein kinase kinases >50%. One completely blocked the activity of the calcium-dependent phosphatase calcineurin. None blocked ERK catalytic activity. Eight blocked more than one pathway. For 8 compounds, we were unable to determine an MMOA. The activity of 1 of these compounds was confirmed from powder resupply. We conclude that a screen based on antibody binding to CTLs is a good means of identifying novel candidate immunosuppressants with either known or unknown MMOAs.


Biochemical and Biophysical Research Communications | 2008

ERK activation is only one role of PKC in TCR-independent cytotoxic T cell granule exocytosis ☆

Arun T. Pores-Fernando; Surabhi Gaur; Michael J. Grybko; Adam Zweifach

Cytotoxic T cells (CTLs) kill target cells by releasing lytic agents via regulated exocytosis. Three signals are known to be required for exocytosis: an increase in intracellular Ca(2+), activation of protein kinase C (PKC) and activation of extracellular signal regulated signal kinase (ERK). ERK activation required for exocytosis depends on activity of PKC. The simplest possibility is that the sole effect of PKC required for exocytosis is ERK activation. Testing this requires dissociating ERK and PKC activation. We did this using TCR-independent stimulation of TALL-104 human leukemic CTLs. When cells are stimulated with thapsigargin and PMA, agents that increase intracellular Ca(2+) and activate PKC, respectively, PKC-dependent ERK activation is required for lytic granule exocytosis. Expressing a constitutively active mutant MAP kinase kinase activates ERK independent of PKC. However, activating ERK without PKC does not support lytic granule exocytosis, indicating that there are multiple effects of PKC required for granule exocytosis.


Journal of Biomolecular Screening | 2016

Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

Jaimee Doucette; Ziyan Zhao; Rory J. Geyer; Melanie M. Barra; Marcy J. Balunas; Adam Zweifach

Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)–activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections.


Bioorganic & Medicinal Chemistry | 2016

Synthesis and biological evaluation of santacruzamate A analogues for anti-proliferative and immunomodulatory activity

Samantha M. Gromek; James A. deMayo; Andrew T. Maxwell; Ashley M. West; Christopher Pavlik; Ziyan Zhao; Jin Li; Andrew J. Wiemer; Adam Zweifach; Marcy J. Balunas

Santacruzamate A (SCA) is a natural product isolated from a Panamanian marine cyanobacterium, previously reported to have potent and selective histone deacetylase (HDAC) activity. To optimize the enzymatic and cellular activity, 40 SCA analogues were synthesized in a systematic exploration of the zinc-binding group (ZBG), cap terminus, and linker region. Two cap group analogues inhibited proliferation of MCF-7 breast cancer cells, with analogous increased degranulation of cytotoxic T cells (CTLs), while one cap group analogue reduced CTL degranulation, indicative of suppression of the immune response. Additional testing of these analogues resulted in reevaluation of the previously reported SCA mechanism of action. These analogues and the resulting structure-activity relationships will be of interest for future studies on cell proliferation and immune modulation.


Journal of Biomolecular Screening | 2016

Development of an Enhanced Phenotypic Screen of Cytotoxic T-Lymphocyte Lytic Granule Exocytosis Suitable for Use with Synthetic Compound and Natural Product Collections

Ziyan Zhao; James A. deMayo; Ashley M. West; Marcy J. Balunas; Adam Zweifach

We previously developed an assay of cytotoxic T-lymphocyte lytic granule exocytosis based on externalization of LAMP-1/CD107A using nonphysiological stimuli to generate maximal levels of exocytosis. Here, we used polystyrene beads coated with anti-CD3 antibodies to stimulate cells. Light scatter let us distinguish cells that contacted beads from cells that had not, allowing comparison of signaling events and exocytosis from stimulated and unstimulated cells in one sample. Bead stimulation resulted in submaximal exocytosis, making it possible to detect compounds that either augment or inhibit lytic granule exocytosis. Coupled with the assay’s ability to distinguish responses in cells that have and have not contacted a stimulatory bead, it is possible to detect three kinds of compounds: inhibitors, stimulators, which cause exocytosis, and augmenters, which enhance receptor-stimulated exocytosis. To validate the assay, we screened a set of synthetic compounds identified using our previous assay and a library of 320 extracts prepared from tunicate-associated bacteria. One of the extracts augmented exocytosis threefold. Activity-guided fractionation and structure elucidation revealed that this compound is the known PKC activator teleocidin A-1. We conclude that our modified assay is suitable for screening synthetic compound plates and natural product collections, and will be useful for identifying immunologically active small molecules.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2018

A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds:

Ziyan Zhao; Liza Henowitz; Adam Zweifach

We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

Collaboration


Dive into the Adam Zweifach's collaboration.

Top Co-Authors

Avatar

Ziyan Zhao

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley M. West

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

James A. deMayo

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Mark K. Haynes

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Surabhi Gaur

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Amy E. Florian

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge