Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adas Darinskas is active.

Publication


Featured researches published by Adas Darinskas.


Stem Cells and Development | 2012

Same or Not the Same? Comparison of Adipose Tissue-Derived Versus Bone Marrow-Derived Mesenchymal Stem and Stromal Cells

Marius Strioga; Sowmya Viswanathan; Adas Darinskas; Ondrej Slaby; Jaroslav Michálek

Mesenchymal stem/stromal cells (MSCs) comprise a heterogeneous population of cells with multilineage differentiation potential, the ability to modulate oxidative stress, and secrete various cytokines and growth factors that can have immunomodulatory, angiogenic, anti-inflammatory and anti-apoptotic effects. Recent data indicate that these paracrine factors may play a key role in MSC-mediated effects in modulating various acute and chronic pathological conditions. MSCs are found in virtually all organs of the body. Bone marrow-derived MSCs (BM-MSCs) were discovered first, and the bone marrow was considered the main source of MSCs for clinical application. Subsequently, MSCs have been isolated from various other sources with the adipose tissue, serving as one of the alternatives to bone marrow. Adipose tissue-derived MSCs (ASCs) can be more easily isolated; this approach is safer, and also, considerably larger amounts of ASCs can be obtained compared with the bone marrow. ASCs and BM-MSCs share many biological characteristics; however, there are some differences in their immunophenotype, differentiation potential, transcriptome, proteome, and immunomodulatory activity. Some of these differences may represent specific features of BM-MSCs and ASCs, while others are suggestive of the inherent heterogeneity of both BM-MSC and ASC populations. Still other differences may simply be related to different isolation and culture protocols. Most importantly, despite the minor differences between these MSC populations, ASCs seem to be as effective as BM-MSCs in clinical application, and, in some cases, may be better suited than BM-MSCs. In this review, we will examine in detail the ontology, biology, preclinical, and clinical application of BM-MSCs versus ASCs.


Journal of Biological Chemistry | 2005

Does the Cytotoxic Effect of Transient Amyloid Oligomers from Common Equine Lysozyme in Vitro Imply Innate Amyloid Toxicity

Mantas Malisauskas; Johan Ostman; Adas Darinskas; Vladimir Zamotin; Evaldas Liutkevicius; Erik Lundgren; Ludmilla Morozova-Roche

In amyloid diseases, it is not evident which protein aggregates induce cell death via specific molecular mechanisms and which cause damage because of their mass accumulation and mechanical properties. We showed that equine lysozyme assembles into soluble amyloid oligomers and protofilaments at pH 2.0 and 4.5, 57 °C. They bind thioflavin-T and Congo red similar to common amyloid structures, and their morphology was monitored by atomic force microscopy. Molecular volume evaluation from microscopic measurements allowed us to identify distinct types of oligomers, ranging from tetramer to octamer and 20-mer. Monomeric lysozyme and protofilaments are not cytotoxic, whereas the oligomers induce cell death in primary neuronal cells, primary fibroblasts, and the neuroblastoma IMR-32 cell line. Cytotoxicity was accessed by ethidium bromide staining, MTT reduction, and TUNEL assays. Primary cultures were more susceptible to the toxic effect induced by soluble amyloid oligomers than the neuroblastoma cell line. The cytotoxicity correlates with the size of oligomers; the sample incubated at pH 4.5 and containing larger oligomers, including 20-mer, appears to be more cytotoxic than the lysozyme sample kept at pH 2.0, in which only tetramers and octamers were found. Soluble amyloid oligomers may assemble into rings; however, there was no correlation between the quantity of rings in the sample and its toxicity. The cytotoxicity of transient oligomeric species of the ubiquitous protein lysozyme indicates that this is an intrinsic feature of protein amyloid aggregation, and therefore soluble amyloid oligomers can be used as a primary therapeutic target and marker of amyloid disease.


Biofabrication | 2015

Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography

Justinas Maciulaitis; Milda Deveikytė; Sima Rekštytė; Maksim Bratchikov; Adas Darinskas; Agnė Šimbelytė; Gintaras Daunoras; Aida Laurinavičienė; Arvydas Laurinavicius; Rimtautas Gudas; Mangirdas Malinauskas; Romaldas Mačiulaitis

Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patients specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.


FEBS Journal | 2009

Protein oligomerization induced by oleic acid at the solid–liquid interface – equine lysozyme cytotoxic complexes

Kristina Wilhelm; Adas Darinskas; Wim Noppe; Elke Duchardt; K. Hun Mok; Vladana Vukojević; Jürgen Schleucher; Ludmilla A. Morozova-Roche

Protein oligomeric complexes have emerged as a major target of current research because of their key role in aggregation processes in living systems and inu2003vitro. Hydrophobic and charged surfaces may favour the self‐assembly process by recruiting proteins and modifying their interactions. We found that equine lysozyme assembles into multimeric complexes with oleic acid (ELOA) at the solid–liquid interface within an ion‐exchange chromatography column preconditioned with oleic acid. The properties of ELOA were characterized using NMR, spectroscopic methods and atomic force microscopy, and showed similarity with both amyloid oligomers and the complexes with oleic acid and its structural homologous protein α‐lactalbumin, known as humanα‐lactalbumin made lethal for tumour cells (HAMLET). As determined by NMR diffusion measurements, ELOA may consist of 4–30 lysozyme molecules. Each lysozyme molecule is able to bind 11–48 oleic acids in various preparations. Equine lysozyme acquired a partially unfolded conformation in ELOA, as evident from its ability to bind hydrophobic dye 8‐anilinonaphthalene‐1‐sulfonate. CD and NMR spectra. Similar to amyloid oligomers, ELOA also interacts with thioflavin‐T dye, shows a spherical morphology, assembles into ring‐shaped structures, as monitored by atomic force microscopy, and exerts a toxic effect in cells. Studies of well‐populated ELOA shed light on the nature of the amyloid oligomers and HAMLET complexes, suggesting that they constitute one large family of cytotoxic proteinaceous species. The hydrophobic surfaces can be used profitably to produce complexes with very distinct properties compared to their precursor proteins.


European Journal of Neurology | 2007

Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson's disease patients

Kristina Wilhelm; Kiran Yanamandra; M. A. Gruden; Vladimir Zamotin; Mantas Malisauskas; Vida Casaite; Adas Darinskas; Lars Forsgren; Ludmilla A. Morozova-Roche

Peripheral immune responses can be sensitive indicators of disease pathology. We evaluated the autoimmune reactions to endocrine (insulin) and astrocytical (S100B) biomarkers in the blood sera of 26 Parkinsons disease (PD) patients compared with controls by using ELISA. We found a statistically significant increase of the autoimmune responses to both antigens in PD patients compared with controls with a mean increase of 70% and 50% in the autoimmune reactions towards insulin and S100B, respectively. Heterogeneity of the immune responses observed in patients may reflect the modulating effect of multiple variables associated with neurodegeneration and also changes in the basic mechanisms of individual autoimmune reactivity. We did not detect any pronounced immune reactions towards insulin amyloid fibrils and oligomers in PD patients, indicating that an amyloid‐specific conformational epitope is not involved in immune recognition of this amyloid type, while sequential epitope of native insulin is hidden within the amyloid structures. Immune reactions towards S100B and insulin may reflect the neurodegenerative brain damaging processes and impaired insulin homeostasis occurring in PD.


Cell Transplantation | 2015

Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis.

Jaroslav Michálek; Rene Moster; Ladislav Lukac; Kenneth Proefrock; Miron Petrasovic; Jakub Rybar; Martina Capkova; Ales Chaloupka; Adas Darinskas; Jan Kristek; Jan Travnik; Petr Jabandziev; Marek Cibulka; Michal Holek; Michal Jurik; Josef Skopalik; Zlatuse Kristkova; Zuzana Dudasova

Ahead of Print article withdrawn by publisher


Biochemistry | 2006

Intermediate amyloid oligomers of lysozyme : is their cytotoxicity a particular case or general rule for amyloid?

Mantas Malisauskas; Adas Darinskas; Vladimir Zamotin; Anna L. Gharibyan; I. A. Kostanyan; Ludmilla A. Morozova-Roche

In the current study we investigated the molecular mechanisms of cytotoxicity of amyloid oligomers of horse milk lysozyme. We have shown that lysozyme forms soluble amyloid oligomers and protofibrils during incubation at pH 2.0 and 4.5 and 57°C. These structures bind the amyloid-specific dyes thioflavin T and Congo Red, and their morphology and size were analyzed by atomic force microscopy. Monomeric lysozyme and its fibrils did not affect the viability of three cell types used in our experiments including primary murine neurons and fibroblasts, as well as neuroblastoma cell line IMR-32. However, soluble amyloid oligomers of lysozyme caused death of all these cell types, as estimated by flow-cytometry counting dead cells stained with ethidium bromide. The primary cell cultures appeared to be more sensitive to amyloid than neuroblastoma cell line IMR-32. Amyloid cytotoxicity depends on the size of oligomeric particles: samples containing 20-mers formed at pH 4.5 were more toxic than tetramers and octamers present in the solution at pH 2.0. Soluble amyloid oligomers can self-assemble into doughnut-like structures; however, no correlation was observed between the amount of the doughnut-like structures in the sample and its cytotoxicity. The fact that the intermediate oligomers of such an abundant protein as lysozyme display cytotoxicity confirms a hypothesis that cytotoxicity is a common feature of protein amyloid. Inhibition of intermediate oligomer formation is crucial in preventing amyloid pathogeneses.


Vaccine | 2014

Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: To use or not to use?

Marius Strioga; Adas Darinskas; Vita Pasukoniene; Agata Mlynska; Valerijus Ostapenko; Virgil E.J.C. Schijns

Accumulation of firm evidence that clinically apparent cancer develops only when malignant cells manage to escape immunosurveillance led to the introduction of tumor immunotherapy strategies aiming to reprogramm the cancer-dysbalanced antitumor immunity and restore its capacity to control tumor growth. There are several immunotherapeutical strategies, among which specific active immunotherapy or therapeutic cancer vaccination is one of the most promising. It targets dendritic cells (DCs) which have a unique ability of inducing naive and central memory T cell-mediated immune response in the most efficient manner. DCs can be therapeutically targeted either in vivo/in situ or by ex vivo manipulations followed by their re-injection back into the same patient. The majority of current DC targeting strategies are based on autologous or allogeneic tumor-associated antigens (TAAs) which possess various degrees of inherent tolerogenic potential. Therefore still limited efficacy of various tumor immunotherapy approaches may be attributed, among various other mechanisms, to the insufficient immunogenicity of self-protein-derived TAAs. Based on such an idea, the use of homologous xenogeneic antigens, derived from different species was suggested to overcome the natural immune tolerance to self TAAs. Xenoantigens are supposed to differ sufficiently from self antigens to a degree that renders them immunogenic, but at the same time preserves an optimal homology range with self proteins still allowing xenoantigens to induce cross-reactive T cells. Here we discuss the concept of xenogeneic vaccination, describe the cons and pros of autologous/allogeneic versus xenogeneic therapeutic cancer vaccines, present the results of various pre-clinical and several clinical studies and highlight the future perspectives of integrating xenovaccination into rapidly developing tumor immunotherapy regimens.


Cellular & Molecular Biology Letters | 2007

Engrafting fetal liver cells into multiple tissues of healthy adult mice without the use of immunosuppressants

Adas Darinskas; Renata Gasparaviciute; Mantas Malisauskas; Kristina Wilhelm; Jurij A. Kozhevnikov; Evaldas Liutkevicius; Audrone Pilinkiene; Ludmilla A. Morozova-Roche

We have shown the fetal liver cell engraftments into multiple tissues of adult healthy mice, achieved without suppressing the animals’ immune systems. Fetal cells from the livers of male C57Bl/6J Black lineage mice at day 13 to 15 of gestation were injected intravenously into female adult CC57W/MY White mice. The grafting was evaluated by Y-chromosome-specific PCR, cytometric analysis of fluorescently stained donor cells, and histological analysis. All the methods consistently showed the presence of multiple engraftments randomly distributed through the various organs of the recipients. After 60 days, the grafts still constituted 0.1 to 2.75% of the tissues. The grafted cells did not change their appearance in any of the organs except the brain, where they became enlarged. Inflammatory reactions were not detected in any of the histological preparations. The frequency of engraftments was higher in the liver, indicating that similarity between the donor and recipient cells facilitates engraftment. The high inherent plasticity of fetal liver cells underlies their ability to integrate into healthy recipient organs, which can be governed by environmental conditions and connections with neighboring cells rather than by the initial cellular developmental programs. The fact that fetal liver cells can be grafted into multiple tissues of healthy animals indicates that they can be used to replace the natural loss of cells in adult organisms.


Vaccine | 2018

Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines

N. Dobrovolskienė; V. Pašukonienė; Adas Darinskas; J.A. Kraśko; K. Žilionytė; Agata Mlynska; Ž. Gudlevičienė; E. Mišeikytė-Kaubrienė; Virgil E.J.C. Schijns; W. Lubitz; P. Kudela; Marius Strioga

Cancer immunotherapy with dendritic cell (DC)-based vaccines has been used to treat various malignancies for more than two decades, however generally showed a limited clinical success. Among various factors responsible for their modest clinical activity is the lack of universally applied, standardized protocols for the generation of clinical-grade DC vaccines, capable of inducing effective anti-tumor immune responses. We investigated Bacterial Ghosts (BGs) - empty envelopes of Gram-negative bacteria - as a tool for optimized production of DC vaccines. BGs possess various intact cell surface structures, exhibiting strong adjuvant properties required for the induction of DC maturation, whereas their empty internal space can be easily filled with a source tumor antigens, e.g. tumor lysate. Hence BGs emerge as an excellent platform for both the induction of immunogenic DC maturation and loading with tumor antigens in a single-step procedure. We compared the phenotype, cytokine secretion profile, functional activity and ability to induce immunogenic T-cell responses in vitro of human monocyte-derived DCs generated using BG platform and DCs matured with widely used lipopolysaccharide (LPS) plus interferon-γ cocktail and loaded with tumor lysate. Both approaches induced DC maturation, however BG-based protocol was superior to LPS-based protocol in terms of the ability to induce DCs with a lower tolerogenic potential, resulting in a more robust CD8+ T cell activation and their functional activity as well as significantly lower induction of regulatory T cells. These superior parameters are attributed, at least in part, to the ability of BG-matured DCs to resist potential immunosuppressive and pro-tolerogenic activity of various tumor cell lysates, including melanoma, renal carcinoma and glioblastoma.

Collaboration


Dive into the Adas Darinskas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virgil E.J.C. Schijns

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaroslav Michálek

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge