Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adel A. Rashad is active.

Publication


Featured researches published by Adel A. Rashad.


Journal of Medicinal Chemistry | 2014

Chikungunya virus: emerging targets and new opportunities for medicinal chemistry.

Adel A. Rashad; Suresh Mahalingam; Paul A. Keller

Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa and Asia and documented outbreaks in Europe and the Americas. It is having an increasingly major impact on humankind, with potentially life-threatening and debilitating arthritis. There is no treatment available, and only in the past 24 months have lead compounds for development as potential therapeutics been reported. This Perspective discusses the chikungunya virus as a significant, new emerging topic for medicinal chemistry, highlighting the key viral target proteins and their molecular functions that can be used in drug design, as well as the most important ongoing developments for anti-chikungunya virus research. It represents a complete picture of the current medicinal chemistry of chikungunya, supporting the development of chemotherapeutics through drug discovery and design targeting this virus.


Journal of Medicinal Chemistry | 2015

Peptide Triazole Inactivators of HIV-1 Utilize a Conserved Two-Cavity Binding Site at the Junction of the Inner and Outer Domains of Env gp120.

Rachna Aneja; Adel A. Rashad; Huiyuan Li; Ramalingam Venkat Kalyana Sundaram; Caitlin Duffy; Lauren D. Bailey; Irwin M. Chaiken

We used coordinated mutagenesis, synthetic design, and flexible docking to investigate the structural mechanism of Env gp120 encounter by peptide triazole (PT) inactivators of HIV-1. Prior results demonstrated that the PT class of inhibitors suppresses binding at both CD4 and coreceptor sites on Env and triggers gp120 shedding, leading to cell-independent irreversible virus inactivation. Despite these enticing anti-HIV-1 phenotypes, structural understanding of the PT-gp120 binding mechanism has been incomplete. Here we found that PT engages two inhibitor ring moieties at the junction between the inner and outer domains of the gp120 protein. The results demonstrate how combined occupancy of two gp120 cavities can coordinately suppress both receptor and coreceptor binding and conformationally entrap the protein in a destabilized state. The two-cavity model has common features with small molecule gp120 inhibitor binding sites and provides a guide for further design of peptidomimetic HIV-1 inactivators based on the PT pharmacophore.


Journal of Molecular Graphics & Modelling | 2013

Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins

Adel A. Rashad; Paul A. Keller

Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa, Asia, Europe and the Americas. It is having an increasingly major impact on humans with potentially life-threatening and debilitating arthritis. Thus far, neither vaccines nor medications are available to treat or control the virus and therefore, the development of medicinal chemistry is a vital and immediate issue that needs to be addressed. The viral envelope proteins play a major role during infection through mediation of binding and fusion with the infected cell surfaces. The possible binding target sites of the chikungunya virus envelope proteins have not previously been investigated; we describe here for the first time the identification of novel sites for potential binding on the chikungunya glycoprotein complexes and the identification of possible antagonists for these sites through virtual screening using two successive docking scores; FRED docking for fast precise screening, with the top hits then subjected to a ranking scoring using the AUTODOCK algorithm. Both the immature and the mature forms of the chikungunya envelope proteins were included in the study to increase the probability of finding positive and reliable hits. Some small molecules have been identified as good in silico chikungunya virus envelope proteins inhibitors and these could be good templates for drug design targeting this virus.


Journal of Medicinal Chemistry | 2015

Macrocyclic Envelope Glycoprotein Antagonists that Irreversibly Inactivate HIV-1 before Host Cell Encounter

Adel A. Rashad; Ramalingam Venkat Kalyana Sundaram; Rachna Aneja; Caitlin Duffy; Irwin M. Chaiken

We derived macrocyclic HIV-1 antagonists as a new class of peptidomimetic drug leads. Cyclic peptide triazoles (cPTs) retained the gp120 inhibitory and virus-inactivating signature of parent PTs, arguing that cyclization locked an active conformation. The six-residue cPT 9 (AAR029b) exhibited submicromolar antiviral potencies in inhibiting cell infection and triggering gp120 shedding that causes irreversible virion inactivation. Importantly, cPTs were stable to trypsin and chymotrypsin compared to substantial susceptibility of corresponding linear PTs.


ACS Medicinal Chemistry Letters | 2014

Facile Synthesis and Preliminary Structure-Activity Analysis of New Sulfonamides Against Trypanosoma brucei.

Adel A. Rashad; Amy J. Jones; Vicky M. Avery; Jonathan B. Baell; Paul A. Keller

The high throughput screening of a library of over 87,000 drug-like compounds against the African sleeping sickness parasite resulted in the discovery of hits with a wide range of molecular diversity. We report here the medicinal chemistry development of one such hit, a tetrahydroisoquinoline disulfonamide, with the synthesis and testing of 26 derivatives against the trypanosome subspecies. Activities in the 2-4 μM range were revealed with a selectivity index suitable for further development.


Biochemistry | 2016

Impact of HIV-1 Membrane Cholesterol on Cell-Independent Lytic Inactivation and Cellular Infectivity.

Ramalingam Venkat Kalyana Sundaram; Huiyuan Li; Lauren D. Bailey; Adel A. Rashad; Rachna Aneja; Karl Weiss; James Huynh; Arangaserry Rosemary Bastian; Elisabeth S. Papazoglou; Cameron F. Abrams; Steven P. Wrenn; Irwin M. Chaiken

Peptide triazole thiols (PTTs) have been found previously to bind to HIV-1 Env spike gp120 and cause irreversible virus inactivation by shedding gp120 and lytically releasing luminal capsid protein p24. Since the virions remain visually intact, lysis appears to occur via limited membrane destabilization. To better understand the PTT-triggered membrane transformation involved, we investigated the role of envelope cholesterol on p24 release by measuring the effect of cholesterol depletion using methyl beta-cyclodextrin (MβCD). An unexpected bell-shaped response of PTT-induced lysis to [MβCD] was observed, involving lysis enhancement at low [MβCD] vs loss of function at high [MβCD]. The impact of cholesterol depletion on PTT-induced lysis was reversed by adding exogenous cholesterol and other sterols that support membrane rafts, while sterols that do not support rafts induced only limited reversal. Cholesterol depletion appears to cause a reduced energy barrier to lysis as judged by decreased temperature dependence with MβCD. Enhancement/replenishment responses to [MβCD] also were observed for HIV-1 infectivity, consistent with a similar energy barrier effect in the membrane transformation of virus cell fusion. Overall, the results argue that cholesterol in the HIV-1 envelope is important for balancing virus stability and membrane transformation, and that partial depletion, while increasing infectivity, also makes the virus more fragile. The results also reinforce the argument that the lytic inactivation and infectivity processes are mechanistically related and that membrane transformations occurring during lysis can provide an experimental window to investigate membrane and protein factors important for HIV-1 cell entry.


Proteins | 2017

Recognition of HIV‐Inactivating Peptide Triazoles by the Recombinant Soluble Env Trimer, BG505 SOSIP.664

Kriti Acharya; Adel A. Rashad; Francesca Moraca; Per Johan Klasse; John P. Moore; Cameron F. Abrams; Irwin M. Chaiken

Peptide triazole (PT) antagonists interact with gp120 subunits of HIV‐1 Env trimers to block host cell receptor interactions, trigger gp120 shedding, irreversibly inactivate virus and inhibit infection. Despite these enticing functions, understanding the structural mechanism of PT‐Env trimer encounter has been limited. In this work, we combined competition interaction analysis and computational simulation to demonstrate PT binding to the recombinant soluble trimer, BG505 SOSIP.664, a stable variant that resembles native virus spikes in binding to CD4 receptor as well as known conformationally‐dependent Env antibodies. Binding specificity and computational modeling fit with encounter through complementary PT pharmacophore Ile‐triazolePro‐Trp interaction with a 2‐subsite cavity in the Env gp120 subunit of SOSIP trimer similar to that in monomeric gp120. These findings argue that PTs are able to recognize and bind a closed prefusion state of Env trimer upon HIV‐1 encounter. The results provide a structural model of how PTs exert their function on virion trimeric spike protein and a platform to inform future antagonist design. Proteins 2017; 85:843–851.


ACS Chemical Biology | 2015

Disulfide Sensitivity in the Env Protein Underlies Lytic Inactivation of HIV-1 by Peptide Triazole Thiols.

Lauren D. Bailey; Ramalingam Venkat Kalyana Sundaram; Huiyuan Li; Caitlin Duffy; Rachna Aneja; Arangassery Rosemary Bastian; Andrew P. Holmes; Kantharaju Kamanna; Adel A. Rashad; Irwin M. Chaiken

We investigated the mode of action underlying lytic inactivation of HIV-1 virions by peptide triazole thiol (PTT), in particular the relationship between gp120 disulfides and the C-terminal cysteine-SH required for virolysis. Obligate PTT dimer obtained by PTT SH cross-linking and PTTs with serially truncated linkers between pharmacophore isoleucine-ferrocenyltriazole-proline-tryptophan and cysteine-SH were synthesized. PTT variants showed loss of lytic activity but not binding and infection inhibition upon SH blockade. A disproportionate loss of lysis activity vs binding and infection inhibition was observed upon linker truncation. Molecular docking of PTT onto gp120 argued that, with sufficient linker length, the peptide SH could approach and disrupt several alternative gp120 disulfides. Inhibition of lysis by gp120 mAb 2G12, which binds at the base of the V3 loop, as well as disulfide mutational effects, argued that PTT-induced disruption of the gp120 disulfide cluster at the base of the V3 loop is an important step in lytic inactivation of HIV-1. Further, PTT-induced lysis was enhanced after treating virus with reducing agents dithiothreitol and tris (2-carboxyethyl)phosphine. Overall, the results are consistent with the view that the binding of PTT positions the peptide SH group to interfere with conserved disulfides clustered proximal to the CD4 binding site in gp120, leading to disulfide exchange in gp120 and possibly gp41, rearrangement of the Env spike, and ultimately disruption of the viral membrane. The dependence of lysis activity on thiol-disulfide interaction may be related to intrinsic disulfide exchange susceptibility in gp120 that has been reported previously to play a role in HIV-1 cell infection.


Journal of Medicinal Chemistry | 2018

Bifunctional Chimera That Coordinately Targets Human Immunodeficiency Virus 1 Envelope gp120 and the Host-Cell CCR5 Coreceptor at the Virus–Cell Interface

Adel A. Rashad; Li-Rui Song; Andrew P. Holmes; Kriti Acharya; Shiyu Zhang; Zhi-Long Wang; Ebony N. Gary; Xin Xie; Vanessa Pirrone; Michele Kutzler; Ya-Qiu Long; Irwin M. Chaiken

To address the urgent need for new agents to reduce the global occurrence and spread of AIDS, we investigated the underlying hypothesis that antagonists of the HIV-1 envelope (Env) gp120 protein and the host-cell coreceptor (CoR) protein can be covalently joined into bifunctional synergistic combinations with improved antiviral capabilities. A synthetic protocol was established to covalently combine a CCR5 small-molecule antagonist and a gp120 peptide triazole antagonist to form the bifunctional chimera. Importantly, the chimeric inhibitor preserved the specific targeting properties of the two separate chimera components and, at the same time, exhibited low to subnanomolar potencies in inhibiting cell infection by different pseudoviruses, which were substantially greater than those of a noncovalent mixture of the individual components. The results demonstrate that targeting the virus-cell interface with a single molecule can result in improved potencies and also the introduction of new phenotypes to the chimeric inhibitor, such as the irreversible inactivation of HIV-1.


Future Medicinal Chemistry | 2015

Peptide triazole inactivators of HIV-1: how do they work and what is their potential?

Irwin M. Chaiken; Adel A. Rashad

Collaboration


Dive into the Adel A. Rashad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Keller

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge