Adel Abdel-Moneim
Beni-Suef University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adel Abdel-Moneim.
Journal of Diabetes and Its Complications | 2012
Ayman M. Mahmoud; Mohamed B. Ashour; Adel Abdel-Moneim; Osama M. Ahmed
Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). The present study was hypothesized to investigate the beneficial effects of hesperidin and naringin on hyperglycemia-induced oxidative damage in HFD/STZ-induced diabetic rats. Diabetes was induced by feeding rats with an HFD for 2 weeks followed by an intraperitoneal injection of STZ (35 mg/kg body weight). An oral dose of 50mg/kg hesperidin or naringin was daily given for 4 weeks after diabetes induction. At the end of the experimental period, blood was obtained from jugular vein and livers were rapidly excised and homogenized for biochemical assays. In the diabetic control group, levels of glucose, glycosylated hemoglobin (HbA1c%), MDA, NO, TNF-α and IL-6 were significantly increased, while serum insulin, GSH, vitamin C, and vitamin E levels were decreased. Both hesperidin and naringin administration significantly reversed these alterations. Moreover, supplementation with either compound significantly ameliorated serum and liver MDA, NO and glutathione, and liver antioxidant enzymes. Although detailed studies are required for the evaluation of the exact mechanism of the ameliorative effects of hesperidin and naringin against diabetic complications, these preliminary experimental findings demonstrate that both hesperidin and naringin exhibit antidiabetic effects in a rat model of T2DM by potentiating the antioxidant defense system and suppressing proinflammatory cytokine production.
Excli Journal | 2013
Adel Abdel-Moneim; Basant M Morsy; Ayman M. Mahmoud; Mohamed A Abo-Seif; Mohamed I. Zanaty
Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture.
Biomedicine & Pharmacotherapy | 2017
Ahmed A Hosni; Adel Abdel-Moneim; Eman S. Abdel-Reheim; Samah M. Mohamed; Hamdi Helmy
Cinnamon has a history of use for medicinal purposes and its major benefits have been linked to cinnamaldehyde. The present study aimed to investigate the hypoglycemic action of cinnamaldehyde against fatty-sucrosed diet/streptozotocin (FSD/STZ)-rat model of gestational diabetes. Female albino rats were divided into three groups. Group I fed with normal diet (ND) while group II and III were fed with FSD for eight weeks (five weeks pre-gestational and three weeks gestational). Rats of group III were administered with a daily oral dose of 20mg/kg cinnamaldehyde one week before mating onward. At the 7th day of gestation, FSD-fed rats were injected intraperitoneally with STZ (25mg/kg b.wt.) to induce gestational diabetes. Pre-mating treatment of cinnamaldehyde controls hyperphagia and glucose intolerance during the gestational period than in diabetic rats. It also reduced levels of fructosamine, total cholesterols, triglycerides, leptin, tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA) and nitric oxide (NO), while it significantly increased levels of high-density lipoprotein (HDL)-cholesterol, adiponectin, liver glycogen, reduced glutathione (GSH) and catalase activity at term pregnancy. In addition, cinnamaldehyde administration up-regulated the mRNA expression of peroxisome proliferated activated receptor-gamma (PPARγ) and also ameliorated the number of viable fetuses, implantation loss sites, fetal glucose and insulin levels. In conclusion, cinnamaldehyde has safe hypoglycemic action on gestational diabetes by potentiating insulin secretion and sensitivity through activating the antioxidant defense system, suppressing pro-inflammatory cytokines production, upregulating PPARγ gene expression and alleviating the reproductive performance.
Biomedicine & Pharmacotherapy | 2018
Adel Abdel-Moneim; Heba H. Bakery; Gamal Allam
Diabetes mellitus (DM) is a serious medical problem affecting millions of peoples worldwide, and has a great socio-economic impacts. Cytokines possess a pivotal role in modulation of immune reactions and disease pathogenesis. T-helper type 17 (Th17) cells, an important proinflammatory CD4+ T cell subset secreting interleukin 17 (IL-17), has been embroiled in development of DM. There are recent evidences supporting a definitive role of Th17 cells in the etiology of type 1 diabetes (T1D). In addition, IL-17 has been shown to play a crucial role in inflammation, insulin resistance, and type 2 diabetes (T2D). Recently, small molecules which have been specified to block Th17 cells differentiation are considered as potential therapeutics for the disease. Anti-IL-17 neutralizing antibodies and/or antibodies targeting Th17 cells have been investigated to protect individuals at risk from disease development. In this review we aimed to shed light on the potential role of IL-17 and Th17 cells in both T1D and T2D pathogenesis and future therapeutic strategies.
Medical Principles and Practice | 2018
Adel Abdel-Moneim; Waled M. El-Senousy; Mahmoud Abdel-Latif; Rehab G. Khalil
Objective: To examine the effect of infection with Enterovirus (EV) in children with type 1 diabetes (T1D) on the activities of serum antioxidant enzymes in diabetic and nondiabetic controls. Subjects and Methods: Three hundred and eighty-two diabetic and 100 nondiabetic children were tested for EV RNA using reverse transcriptase (RT)-PCR. The activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were also estimated in diabetic patients infected with EV (T1D-EV+), those not infected with EV (T1D-EV–), and in nondiabetic controls. Results: The frequency of EV was higher in diabetic children (100/382; 26.2%) than in healthy controls (0/100). Levels of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c) and C-reactive protein (CRP) were significantly higher but C-peptide was significantly lower in diabetic children than in controls. CRP levels were higher in the T1D-EV+ group than in the T1D-EV– group, and higher in all diabetic children than in nondiabetic controls. The activities of the antioxidant enzymes GPx, SOD, and CAT decreased significantly in diabetic children compared to in controls. Moreover, the activities of the enzymes tested were significantly reduced in the T1D-EV+ group compared to in the T1D-EV– group. Conclusion: Our data indicate that EV infection correlated with a decrease in the activity of antioxidant enzymes in the T1D-EV+ group compared to in the T1D-EV– group; this may contribute to β cell damage and increased inflammation.
Biomedicine & Pharmacotherapy | 2018
Adel Abdel-Moneim; Sanaa M. Abd El-Twab; Ahmed I. Yousef; Eman S. Abdel Reheim; Mohamed B. Ashour
There are many indications that confirm the vital role of adipocytokines and PPARγ in diabetics. Hence, the current investigation aimed to study the modulatory effects of gallic acid and p-coumaric acid on adipocytokines secretion and PPARγ mRNA expression in type 2 diabetic rats. After induction of type 2 diabetes, diabetic rats were orally treated with 20 mg/kg body mass gallic acid and 40 mg/kg body mass p-coumaric acid for six weeks. Among treatment diabetic rats, glucose and glycosylated hemoglobin levels significantly declined in diabetic rats, while insulin level and body weight significantly increased as compared to control group. Gallic acid and p-coumaric acid markedly decreased the level of TNF-α and increased the levels of PPARγ mRNA and adiponectin. In addition, the tested agents improved markedly lipid profile parameters, cardiovascular indices 1 and 2 and anti-atherogenic index. In conclusion, gallic acid and p-coumaric acid exhibited marked antidiabetic action that could be mediated via modulation of TNF-α and adipocytokines secretions as well as upregulation of PPARγ mRNA expression.
Diabetologia Croatica | 2012
Osama M. Ahmed; Ayman M. Mahmoud; Adel Abdel-Moneim; Mohamed B. Ashour
Metabolic Brain Disease | 2017
Adel Abdel-Moneim; Ahmed I. Yousef; Sanaa M. Abd El-Twab; Eman S. Abdel Reheim; Mohamed B. Ashour
International Journal of Diabetes in Developing Countries | 2015
Ayman M. Mahmoud; Osama M. Ahmed; Mohamed B. Ashour; Adel Abdel-Moneim
International Journal of Bioassays | 2013
Ayman M. Mahmoud; Osama M. Ahmed; Adel Abdel-Moneim; Mohamed B. Ashour