Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adel Hamza is active.

Publication


Featured researches published by Adel Hamza.


Molecular Cancer Therapeutics | 2008

A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells

Tao Zhang; Adel Hamza; Xianhua Cao; Bing Wang; Shuwen Yu; Chang-Guo Zhan; Duxin Sun

Pancreatic cancer is an aggressive disease with multiple biochemical and genetic alterations. Thus, a single agent to hit one molecular target may not be sufficient to treat this disease. The purpose of this study is to identify a novel Hsp90 inhibitor to disrupt protein-protein interactions of Hsp90 and its cochaperones for down-regulating many oncogenes simultaneously against pancreatic cancer cells. Here, we reported that celastrol disrupted Hsp90-Cdc37 interaction in the superchaperone complex to exhibit antitumor activity in vitro and in vivo. Molecular docking and molecular dynamic simulations showed that celastrol blocked the critical interaction of Glu33 (Hsp90) and Arg167 (Cdc37). Immunoprecipitation confirmed that celastrol (10 μmol/L) disrupted the Hsp90-Cdc37 interaction in the pancreatic cancer cell line Panc-1. In contrast to classic Hsp90 inhibitor (geldanamycin), celastrol (0.1-100 μmol/L) did not interfere with ATP binding to Hsp90. However, celastrol (1-5 μmol/L) induced Hsp90 client protein degradation (Cdk4 and Akt) by 70% to 80% and increased Hsp70 expression by 12-fold. Celastrol induced apoptosis in vitro and significantly inhibited tumor growth in Panc-1 xenografts. Moreover, celastrol (3 mg/kg) effectively suppressed tumor metastasis by more than 80% in RIP1-Tag2 transgenic mouse model with pancreatic islet cell carcinogenesis. The data suggest that celastrol is a novel Hsp90 inhibitor to disrupt Hsp90-Cdc37 interaction against pancreatic cancer cells. [Mol Cancer Ther 2008;7(1):162–70]


Biochemical Pharmacology | 2010

Withaferin A targets heat shock protein 90 in pancreatic cancer cells.

Yanke Yu; Adel Hamza; Tao Zhang; Mancang Gu; Peng Zou; Bryan Newman; Yanyan Li; A. A. Leslie Gunatilaka; Chang-Guo Zhan; Duxin Sun

The purpose of this study is to investigate the efficacy and the mechanism of Hsp90 inhibition of Withaferin A (WA), a steroidal lactone occurring in Withania somnifera, in pancreatic cancer in vitro and in vivo. Withaferin A exhibited potent antiproliferative activity against pancreatic cancer cells in vitro (with IC(50)s of 1.24, 2.93 and 2.78 microM) in pancreatic cancer cell lines Panc-1, MiaPaCa2 and BxPc3, respectively. Annexin V staining showed that WA induced significant apoptosis in Panc-1 cells in a dose-dependent manner. Western blotting demonstrated that WA inhibited Hsp90 chaperone activity to induce degradation of Hsp90 client proteins (Akt, Cdk4 and glucocorticoid receptor), which was reversed by the proteasomal inhibitor, MG132. WA-biotin pull down assay of Hsp90 using Panc-1 cancer cell lysates and purified Hsp90 showed that WA-biotin binds to C-terminus of Hsp90 which was competitively blocked by unlabeled WA. Co-immunoprecipitation exhibited that WA (10 microM) disrupted Hsp90-Cdc37 complexes from 1 to 24h post-treatment, while it neither blocked ATP binding to Hsp90, nor changed Hsp90-P23 association. WA (3, 6mg/kg) inhibited tumor growth in pancreatic Panc-1 xenografts by 30% and 58%, respectively. These data demonstrate that Withaferin A binds Hsp90, inhibits Hsp90 chaperone activity through an ATP-independent mechanism, results in Hsp90 client protein degradation, and exhibits in vivo anticancer activity against pancreatic cancer.


Journal of Biological Chemistry | 2010

Withaferin A Targets Intermediate Filaments Glial Fibrillary Acidic Protein and Vimentin in a Model of Retinal Gliosis

Paola Bargagna-Mohan; Riya R. Paranthan; Adel Hamza; Neviana Dimova; Beatrice Trucchi; Cidambi Srinivasan; Gregory I. Elliott; Chang-Guo Zhan; Daniel L. Lau; Haiyan Zhu; Kousuke Kasahara; Masaki Inagaki; Franca Cambi; Royce Mohan

Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G0/G1 arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.


Journal of Chemical Information and Modeling | 2008

Combined 3D-QSAR Modeling and Molecular Docking Study on Indolinone Derivatives as Inhibitors of 3-Phosphoinositide-Dependent Protein Kinase-1

Mohamed Diwan M. AbdulHameed; Adel Hamza; Junjun Liu; Chang-Guo Zhan

3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a promising target for developing novel anticancer drugs. In order to understand the structure-activity correlation of indolinone-based PDK1 inhibitors, we have carried out a combined molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling study. The study has resulted in two types of satisfactory 3D-QSAR models, including the CoMFA model (r(2)=0.907; q(2)=0.737) and CoMSIA model (r(2)=0.991; q(2)=0.824), for predicting the biological activity of new compounds. The detailed microscopic structures of PDK1 binding with inhibitors have been studied by molecular docking. We have also developed docking-based 3D-QSAR models (CoMFA with q(2)=0.729; CoMSIA with q(2)=0.79). The contour maps obtained from the 3D-QSAR models in combination with the docked binding structures help to better interpret the structure-activity relationship. All of the structural insights obtained from both the 3D-QSAR contour maps and molecular docking are consistent with the available experimental activity data. This is the first report on 3D-QSAR modeling of PDK1 inhibitors. The satisfactory results strongly suggest that the developed 3D-QSAR models and the obtained PDK1-inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and in future drug design.


Bioorganic & Medicinal Chemistry | 2011

Novel human mPGES-1 inhibitors identified through structure-based virtual screening.

Adel Hamza; Xinyun Zhao; Min Tong; Hsin-Hsiung Tai; Chang-Guo Zhan

Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase after exposure to pro-inflammatory stimuli and, therefore, represents a novel target for therapeutic treatment of acute and chronic inflammatory disorders. It is essential to identify mPGES-1 inhibitors with novel scaffolds as new leads or hits for the purpose of drug design and discovery that aim to develop the next-generation anti-inflammatory drugs. Herein we report novel mPGES-1 inhibitors identified through a combination of large-scale structure-based virtual screening, flexible docking, molecular dynamics simulations, binding free energy calculations, and in vitro assays on the actual inhibitory activity of the computationally selected compounds. The computational studies are based on our recently developed three-dimensional (3D) structural model of mPGES-1 in its open state. The combined computational and experimental studies have led to identification of new mPGES-1 inhibitors with new scaffolds. In particular, (Z)-5-benzylidene-2-iminothiazolidin-4-one is a promising novel scaffold for the further rational design and discovery of new mPGES-1 inhibitors. To our best knowledge, this is the first time a 3D structural model of the open state mPGES-1 is used in structure-based virtual screening of a large library of available compounds for the mPGES-1 inhibitor identification. The positive experimental results suggest that our recently modeled trimeric structure of mPGES-1 in its open state is ready for the structure-based drug design and discovery.


Journal of Natural Products | 2013

Assessing the Regioselectivity of OleD-Catalyzed Glycosylation with a Diverse Set of Acceptors

Maoquan Zhou; Adel Hamza; Chang-Guo Zhan; Jon S. Thorson

To explore the acceptor regioselectivity of OleD-catalyzed glucosylation, the products of OleD-catalyzed reactions with six structurally diverse acceptors flavones- (daidzein), isoflavones (flavopiridol), stilbenes (resveratrol), indole alkaloids (10-hydroxycamptothecin), and steroids (2-methoxyestradiol)-were determined. This study highlights the first synthesis of flavopiridol and 2-methoxyestradiol glucosides and confirms the ability of OleD to glucosylate both aromatic and aliphatic nucleophiles. In all cases, molecular dynamics simulations were consistent with the determined product distribution and suggest the potential to develop a virtual screening model to identify additional OleD substrates.


Journal of Chemical Information and Modeling | 2012

Ligand-Based Virtual Screening Approach Using a New Scoring Function

Adel Hamza; Ning-Ning Wei; Chang-Guo Zhan

In this study, we aimed to develop a new ligand-based virtual screening approach using an effective shape-overlapping procedure and a more robust scoring function (denoted by the HWZ score for convenience). The HWZ score-based virtual screening approach was tested against the compounds for 40 protein targets available in the Database of Useful Decoys (DUD; dud.docking.org/jahn/ ), and the virtual screening performance was evaluated in terms of the area under the receiver operator characteristic (ROC) curve (AUC), enrichment factor (EF), and hit rate (HR), demonstrating an improved overall performance compared to other popularly used approaches examined. In particular, the HWZ score-based virtual screening led to an average AUC value of 0.84 ± 0.02 (95% confidence interval) for the 40 targets. The average HR values at the top 1% and 10% of the active compounds for the 40 targets were 46.3% ± 6.7% and 59.2% ± 4.7%, respectively. In addition, the performance of the HWZ score-based virtual screening approach is less sensitive to the choice of the target.


Journal of Physical Chemistry B | 2010

Understanding Microscopic Binding of Human Microsomal Prostaglandin E Synthase-1 (mPGES-1) Trimer with Substrate PGH2 and Cofactor GSH: Insights from Computational Alanine Scanning and Site-directed Mutagenesis

Adel Hamza; Min Tong; Mohamed Diwan M. AbdulHameed; Junjun Liu; Alan C. Goren; Hsin-Hsiung Tai; Chang-Guo Zhan

Microsomal prostaglandin E synthase-1 (mPGES-1) is an essential enzyme involved in a variety of diseases and is the most promising target for the design of next-generation anti-inflammatory drugs. In order to establish a solid structural base, we recently developed a model of mPGES-1 trimer structure by using available crystal structures of both microsomal glutathione transferase-1 (MGST1) and ba3-cytochrome c oxidase as templates. The mPGES-1 trimer model has been used in the present study to examine the detailed binding of mPGES-1 trimer with substrate PGH(2) and cofactor GSH. Results obtained from the computational alanine scanning reveal the contribution of each residue at the protein-ligand interaction interface to the binding affinity, and the computational predictions are supported by the data obtained from the corresponding wet experimental tests. We have also compared our mPGES-1 trimer model with other available 3D models, including an alternative homology model and a low-resolution crystal structure, and found that our mPGES-1 trimer model based on the crystal structures of both MGST1 and ba3-cytochrome c oxidase is more reasonable than the other homology model of mPGES-1 trimer constructed by simply using a low-resolution crystal structure of MGST1 trimer alone as a template. The available low-resolution crystal structure of mPGES-1 trimer represents a closed conformation of the enzyme and thus is not suitable for studying mPGES-1 binding with ligands. Our mPGES-1 trimer model represents a reasonable open conformation of the enzyme and is therefore promising for studying mPGES-1 binding with ligands in future structure-based drug design targeting mPGES-1.


ACS Chemical Biology | 2013

Fluorinated N,N-dialkylaminostilbenes repress colon cancer by targeting methionine S-adenosyltransferase 2A.

Wen Zhang; Vitaliy M. Sviripa; Xi Chen; Jiandang Shi; Tianxin Yu; Adel Hamza; Nicholas D. Ward; Liliia M. Kril; Craig W. Vander Kooi; Chang-Guo Zhan; B. Mark Evers; David S. Watt; Chunming Liu

Methionine S-adenosyltransferase 2A (MAT2A) is the catalytic subunit for synthesis of S-adenosylmethionine (SAM), the principal methyl donor in many biological processes. MAT2A is up-regulated in many cancers, including liver cancer and colorectal cancer (CRC) and is a potentially important drug target. We developed a family of fluorinated N,N-dialkylaminostilbene agents, called FIDAS agents, that inhibit the proliferation of CRC cells in vitro and in vivo. Using a biotinylated FIDAS analogue, we identified the catalytic subunit of MAT2A as the direct and exclusive binding target of these FIDAS agents. MAT2B, an associated regulatory subunit of MAT2A, binds indirectly to FIDAS agents through its association with MAT2A. FIDAS agents inhibited MAT2A activity in SAM synthesis, and depletion of MAT2A by shRNAs inhibited CRC cell growth. A novel FIDAS agent delivered orally repressed CRC xenografts in athymic nude mice. These findings suggest that FIDAS analogues targeting MAT2A represent a family of novel and potentially useful agents for cancer treatment.


Journal of Molecular Modeling | 2011

Computational characterization of how the VX nerve agent binds human serum paraoxonase 1

Steven Z. Fairchild; Matthew W. Peterson; Adel Hamza; Chang-Guo Zhan; Douglas M. Cerasoli; Wenling E. Chang

Human serum paraoxonase 1 (HuPON1) is an enzyme that can hydrolyze various chemical warfare nerve agents including VX. A previous study has suggested that increasing HuPON1’s VX hydrolysis activity one to two orders of magnitude would make the enzyme an effective countermeasure for in vivo use against VX. This study helps facilitate further engineering of HuPON1 for enhanced VX-hydrolase activity by computationally characterizing HuPON1’s tertiary structure and how HuPON1 binds VX. HuPON1’s structure is first predicted through two homology modeling procedures. Docking is then performed using four separate methods, and the stability of each bound conformation is analyzed through molecular dynamics and solvated interaction energy calculations. The results show that VX’s lone oxygen atom has a strong preference for forming a direct electrostatic interaction with HuPON1’s active site calcium ion. Various HuPON1 residues are also detected that are in close proximity to VX and are therefore potential targets for future mutagenesis studies. These include E53, H115, N168, F222, N224, L240, D269, I291, F292, and V346. Additionally, D183 was found to have a predicted pKa near physiological pH. Given D183’s location in HuPON1’s active site, this residue could potentially act as a proton donor or accepter during hydrolysis. The results from the binding simulations also indicate that steered molecular dynamics can potentially be used to obtain accurate binding predictions even when starting with a closed conformation of a protein’s binding or active site.

Collaboration


Dive into the Adel Hamza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ning-Ning Wei

Dalian University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junjun Liu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge