Adel M. Naylor-Olsen
United States Military Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adel M. Naylor-Olsen.
Bioorganic & Medicinal Chemistry Letters | 1998
Philip E.J. Sanderson; Kellie J. Cutrona; Bruce D. Dorsey; Dona L. Dyer; Colleen McDonough; Adel M. Naylor-Olsen; I-Wu Chen; Zhongguo Chen; Jacquelynn J. Cook; Stephen J. Gardell; Julie A. Krueger; S.Dale Lewis; Jiunn H. Lin; Bobby J. Lucas; Elizabeth A. Lyle; Joseph J. Lynch; Maria T. Stranieri; Kari Vastag; Jules A. Shafer; Joseph P. Vacca
Replacement of the amidinopiperidine P1 group of 3-benzylsulfonylamino-6-methyl-2-pyridinone acetamide thrombin inhibitor L-373,890 (2) with a mildly basic 5-linked 2-amino-6-methylpyridine results in an equipotent compound L-374,087 (5, Ki = 0.5 nM). Compound 5 is highly selective for thrombin over trypsin, is efficacious in the rat ferric chloride model of arterial thrombosis and is orally bioavailable in dogs and cynomolgus monkeys. The structural basis for the critical importance of both methyl groups in 5 was confirmed by X-ray crystallography.
Bioorganic & Medicinal Chemistry Letters | 1997
Terry A. Lyle; Zhongguo Chen; S. D. Appleby; Roger M. Freidinger; Stephen J. Gardell; Lewis Sd; Yuxing Li; Elizabeth A. Lyle; J.J. Lynch; Anne M. Mulichak; A. S. Ng; Adel M. Naylor-Olsen; William M. Sanders
Abstract Removal of the β-ketoamide functionality from L-370,518 (Ki = 0.09 nM) provided a 5 nM Ki inhibitor of thrombin: L-371,912. Comparison of the enzyme-inhibitor crystal structures suggests a possible explanation for the relatively small change in affinity for thrombin. L-371,912 is selective for thrombin over related serine proteases and is efficacious in an animal model of arterial thrombosis.
Bioorganic & Medicinal Chemistry Letters | 2002
Robert S. Meissner; James J. Perkins; Le T. Duong; George D. Hartman; William F. Hoffman; Joel R. Huff; Nathan C. Ihle; Chih-Tai Leu; Rose M. Nagy; Adel M. Naylor-Olsen; Gideon A. Rodan; Sevgi B. Rodan; David B. Whitman; Gregg Wesolowski; Mark E. Duggan
Abstract Mimetics of the RGD tripeptide are described that are potent, selective antagonists of the integrin receptor, αvβ3. The use of the 5,6,7,8-tetrahydro[1,8]naphthyridine group as a potency-enhancing N-terminus is demonstrated. Two 3-substituted-3-amino-propionic acids previously contained in αIIbβ3 antagonists were utilized to enhance binding affinity and functional activity for the targeted receptor. Further affinity increases were then achieved through the use of cyclic glycyl amide bond constraints.
Bioorganic & Medicinal Chemistry Letters | 1997
Philip E.J. Sanderson; Dona L. Dyer; Adel M. Naylor-Olsen; Joseph P. Vacca; Steven J. Gardell; S.Dale Lewis; Bobby J. Lucas; Elizabeth A. Lyle; Joseph J. Lynch; Anne M. Mulichak
Abstract L-373,890, a highly selective and efficacious pyridinone acetamide thrombin inhibitor was designed using a combination of X-ray crystallography, molecular modeling and empirical structure optimization.
Bioorganic & Medicinal Chemistry Letters | 2003
Philip E.J. Sanderson; Matthew Stanton; Bruce D. Dorsey; Terry A. Lyle; Colleen McDonough; William M. Sanders; Kelly L. Savage; Adel M. Naylor-Olsen; Julie A. Krueger; S.Dale Lewis; Bobby J. Lucas; Joseph J. Lynch; Youwei Yan
Starting from a 2-amino-6-methylpyridine P1 group and following a strategy of enlarging it whilst reducing its polarity, we have developed a series of potent, moderately basic azaindoles which are intrinsically much more selective for thrombin versus trypsin. Certain pyrazinone acetamide azaindole derivatives have pharmacokinetic parameters after oral administration to dogs, or efficacy in vitro, comparable to an optimized pyrazinone acetamide 2-amino-6-methylpyridine derivative.
Bioorganic & Medicinal Chemistry Letters | 1998
Richard C.A. Isaacs; Kellie J. Cutrona; Christina L. Newton; Philip E.J. Sanderson; Mark G. Solinsky; Elizabeth P. Baskin; I-Wu Chen; Carolyn M. Cooper; Jacquelynn J. Cook; Stephen J. Gardell; S.Dale Lewis; Robert J. Lucas; Elizabeth A. Lyle; Joseph J. Lynch; Adel M. Naylor-Olsen; Maria T. Stranieri; Kari Vastag; Joseph P. Vacca
1 (L-374,087) is a potent, selective, efficacious, and orally bioavailable thrombin inhibitor that contains a core 3-amino-2-pyridinone moiety. Replacement of the C6 pyridinone methyl group of 1 by a propyl group gave 5 (L-375,052), which retained all the excellent properties of 1, and also yielded higher plasma levels after oral dosing in dogs and rats.
Bioorganic & Medicinal Chemistry Letters | 2003
Michael J. Breslin; Mark E. Duggan; Wasyl Halczenko; Carmen Fernandez-Metzler; Cecilia A. Hunt; Chih-Tai Leu; Kara Merkle; Adel M. Naylor-Olsen; Thomayant Prueksaritanont; Gary L. Stump; Audrey A. Wallace; Sevgi B. Rodan; John H. Hutchinson
Abstract Two novel series of small-molecule RGD mimetics containing either a substituted pyridone or pyrazinone central constraint were prepared. Modification of the β-alanine 3-substituent produced compounds that are potent and selective α v β 3 antagonists and exhibit a range of physicochemical properties.
Bioorganic & Medicinal Chemistry Letters | 1998
Adel M. Naylor-Olsen; Gerald S. Ponticello; S.Dale Lewis; Anne M. Mulichak; Zhonguo Chen; Charles N. Habecker; Brian T. Phillips; William M. Sanders; Thomas J. Tucker; Jules A. Shafer; Joseph P. Vacca
A novel, nonpeptidyl thrombin inhibitor, L-636,619 (1), was identified via topological similarity searching over the Merck Corporate Sample Database. X-ray crystallographic studies determined the geometry for ligand binding to the enzyme. Chemical modification of the P1 and P3 segments of the ligand resulted in enhanced potency and improvement in the chemical stability of the lead. Analog 9 proved to be the most interesting lead from this structurally novel series.
Bioorganic & Medicinal Chemistry Letters | 2008
Richard C.A. Isaacs; Mark G. Solinsky; Kellie J. Cutrona; Christina L. Newton; Adel M. Naylor-Olsen; Daniel R. McMasters; Julie A. Krueger; S.Dale Lewis; Bobby J. Lucas; Lawrence C. Kuo; Youwei Yan; J.J. Lynch; Elizabeth A. Lyle
Guided by X-ray crystallography of thrombin-inhibitor complexes and molecular modeling, alkylation of the N1 nitrogen of the imidazole P1 ligand of the pyridinoneacetamide thrombin inhibitor 1 with various acetamide moieties furnished inhibitors with significantly improved thrombin potency, trypsin selectivity, functional in vitro anticoagulant potency and in vivo antithrombotic efficacy. In the pyrazinoneacetamide series, oral bioavailability was also improved.
Bioorganic & Medicinal Chemistry Letters | 2003
Philip E. Sanderson; Kellie J. Cutrona; Kelly L. Savage; Adel M. Naylor-Olsen; Denise Bickel; Dennis L. Bohn; Franklin C. Clayton; Julie A. Krueger; S.Dale Lewis; Bobby J. Lucas; Elizabeth A. Lyle; Audrey A. Wallace; Denice C. Welsh; Youwei Yan
We describe a series of highly potent and efficacious thrombin inhibitors based on a 3-amino-4-sulfonylpyridinone acetamide template. The functionally dense sulfonyl group stabilizes the aminopyridinone, conformationally constrains the 4-substituent, and forms a hydrogen bond to the insertion loop tyrosine OH. We also describe a related series of fused bicyclic dihydrothiadiazinedioxide derivatives, of which one had improved pharmacokinetics in dogs after oral dosing.