Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adél Tóth is active.

Publication


Featured researches published by Adél Tóth.


PLOS ONE | 2013

Characterization of virulence properties in the C. parapsilosis sensu lato species.

Tibor Németh; Adél Tóth; Judit Szenzenstein; Peter Horvath; Joshua D. Nosanchuk; Zsuzsanna Grózer; Renáta Tóth; Csaba Papp; Zsuzsanna Hamari; Csaba Vágvölgyi; Attila Gácser

The C. parapsilosis sensu lato group involves three closely related species, C. parapsilosis sensu stricto, C . orthopsilosis and C . metapsilosis . Although their overall clinical importance is dramatically increasing, there are few studies regarding the virulence properties of the species of the psilosis complex. In this study, we tested 63 C. parapsilosis sensu stricto, 12 C . metapsilosis and 18 C . orthopsilosis isolates for the ability to produce extracellular proteases, secrete lipases and form pseudohyphae. Significant differences were noted between species, with the C . metapsilosis strains failing to secrete lipase or to produce pseudohyphae. Nine different clinical isolates each of C. parapsilosis sensu stricto, C . orthopsilosis and C . metapsilosis were co-cultured with immortalized murine or primary human macrophages. C. parapsilosis sensu stricto isolates showed a significantly higher resistance to killing by primary human macrophages compared to C . orthopsilosis and C . metapsilosis isolates. In contrast, the killing of isolates by J774.2 mouse macrophages did not differ significantly between species. However, C. parapsilosis sensu stricto isolates induced the most damage to murine and human macrophages, and C . metapsilosis strains were the least toxic. Furthermore, strains that produced lipase or pseudohyphae were most resistant to macrophage-mediated killing and produced the most cellular damage. Finally, we used 9 isolates of each of the C. parapsilosis sensus lato species to examine their impact on the survival of Galleria mellonella larvae. The mortality rate of G . mellonella larvae infected with C . metapsilosis isolates was significantly lower than those infected with C. parapsilosis sensu stricto or C . orthopsilosis strains. Taken together, our findings demonstrate that C . metapsilosis is indeed the least virulent member of the psilosis group, and also highlight the importance of pseudohyphae and secreted lipases during fungal-host interactions.


The Journal of Infectious Diseases | 2013

Candida albicans and Candida parapsilosis Induce Different T-Cell Responses in Human Peripheral Blood Mononuclear Cells

Adél Tóth; Katalin Csonka; Cor W. M. Jacobs; Csaba Vágvölgyi; Joshua D. Nosanchuk; Mihai G. Netea; Attila Gácser

Candida parapsilosis is the third most frequent cause of candidemia. Despite its clinical importance, little is known about the human immunological response to C. parapsilosis. In this study, we compared the cytokine responses evoked by Candida albicans and C. parapsilosis. C. parapsilosis-stimulated human peripheral blood mononuclear cells (PBMCs) produced similar quantities of tumor necrosis factor α and interleukin 6 and slightly lower amounts of interleukin 1β, compared with C. albicans-stimulated cells. PBMCs stimulated with C. parapsilosis displayed a skewed T-helper cell response, producing more interleukin 10 and less interferon γ than cells stimulated with C. albicans. Notably, C. parapsilosis induced much less interleukin 17 and interleukin 22 production as compared to C. albicans. Inhibition of the 3 classical mitogen-activated protein kinases (p38 kinase, ERK, and JNK) revealed kinase-dependent differences in reductions in cytokine production by the 2 Candida species. Decreased cytokine production after inhibition of dectin 1 revealed that this receptor plays a major role in the recognition of both C. albicans and C. parapsilosis. These data improve understanding of the immune response triggered by C. parapsilosis, a first step for the future design of immunotherapeutic strategies for these infections.


Frontiers in Microbiology | 2016

Role of Protein Glycosylation in Candida parapsilosis Cell Wall Integrity and Host Interaction

Luis A. Pérez-García; Katalin Csonka; Arturo Flores-Carreón; Eine Estrada-Mata; Erika Mellado-Mojica; Tibor Németh; Luz A. López-Ramírez; Renáta Tóth; Mercedes G. López; Csaba Vizler; Annamária Marton; Adél Tóth; Joshua D. Nosanchuk; Attila Gácser; Héctor M. Mora-Montes

Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain. Here, we disrupted C. parapsilosis OCH1 to gain insights into the contribution of N-linked mannosylation to cell fitness and to interactions with immune cells. Loss of Och1 in C. parapsilosis resulted in cellular aggregation, failure of morphogenesis, enhanced susceptibility to cell wall perturbing agents and defects in wall composition. We removed the cell wall O-linked mannans by β-elimination, and assessed the relevance of mannans during interaction with human monocytes. Results indicated that O-linked mannans are important for IL-1β stimulation in a dectin-1 and TLR4-dependent pathway; whereas both, N- and O-linked mannans are equally important ligands for TNFα and IL-6 stimulation, but neither is involved in IL-10 production. Furthermore, mice infected with C. parapsilosis och1Δ null mutant cells had significantly lower fungal burdens compared to wild-type (WT)-challenged counterparts. Therefore, our data are the first to demonstrate that C. parapsilosis N- and O-linked mannans have different roles in host interactions than those reported for C. albicans.


Critical Care Medicine | 2014

The role of pancreatic ductal secretion in protection against acute pancreatitis in mice

Petra Pallagi; Zsolt Balla; Anurag Singh; Sándor Dósa; Béla Iványi; Zoltán Kukor; Adél Tóth; Brigitte Riederer; Yongjian Liu; Regina Engelhardt; K. Jármay; Andrea Szabó; Ágnes Janovszky; George Perides; Viktória Venglovecz; József Maléth; Tibor Wittmann; Tamás Takács; Michael A. Gray; Attila Gácser; Péter Hegyi; Ursula Seidler; Zoltán Rakonczay

Objectives:A common potentially fatal disease of the pancreas is acute pancreatitis, for which there is no treatment. Most studies of this disorder focus on the damage to acinar cells since they are assumed to be the primary target of multiple stressors affecting the pancreas. However, increasing evidence suggests that the ducts may also have a crucial role in induction of the disease. To test this hypothesis, we sought to determine the specific role of the duct in the induction of acute pancreatitis using well-established disease models and mice with deletion of the Na+/H+ exchanger regulatory factor-1 that have selectively impaired ductal function. Design:Randomized animal study. Setting:Animal research laboratory. Subjects:Wild-type and Na+/H+ exchanger regulatory factor-1 knockout mice. Interventions:Acute necrotizing pancreatitis was induced by i.p. administration of cerulein or by intraductal administration of sodium taurocholate. The pancreatic expression of Na+/H+ exchanger regulatory factor-1 and cystic fibrosis transmembrane conductance regulator (a key player in the control of ductal secretion) was analyzed by immunohistochemistry. In vivo pancreatic ductal secretion was studied in anesthetized mice. Functions of pancreatic acinar and ductal cells as well as inflammatory cells were analyzed in vitro. Measurements and Main Results:Deletion of Na+/H+ exchanger regulatory factor-1 resulted in gross mislocalization of cystic fibrosis transmembrane conductance regulator, causing marked reduction in pancreatic ductal fluid and bicarbonate secretion. Importantly, deletion of Na+/H+ exchanger regulatory factor-1 had no deleterious effect on functions of acinar and inflammatory cells. Deletion of Na+/H+ exchanger regulatory factor-1, which specifically impaired ductal function, increased the severity of acute pancreatitis in the two mouse models tested. Conclusions:Our findings provide the first direct evidence for the crucial role of ductal secretion in protecting the pancreas from acute pancreatitis and strongly suggest that improved ductal function should be an important modality in prevention and treatment of the disease.


Virulence | 2014

Secreted Candida parapsilosis lipase modulates the immune response of primary human macrophages.

Adél Tóth; Tibor Németh; Katalin Csonka; Peter Horvath; Csaba Vágvölgyi; Csaba Vizler; Joshua D. Nosanchuk; Attila Gácser

Candida parapsilosis is an important opportunistic pathogen with increasing prevalence. Extracellular lipases have been shown to play an important role in the virulence of pathogenic Candida species. However, studying the role of secreted lipase in C. albicans is challenging due to the lack of a mutant strain deficient in all 10 lipase genes. In contrast, we have previously constructed a lipase mutant C. parapsilosis strain lacking both CpLIP1 and CpLIP2, and shown that it has significantly decreased virulence in various infection models, and is killed more efficiently by mouse macrophages. In the present study, we compared the response of human peripheral blood monocyte-derived macrophages to a wild type (wt) as well as a lipase-deficient (lip−/−) C. parapsilosis strain that has been previously established in our lab. Although macrophages phagocytosed both strains with similar efficiency, lipase mutants were killed more efficiently according to fluorescent microscopic analysis. The more efficient killing of lip−/− cells was confirmed by CFU-determinations. Phagocytosis of wt and lip−/−C. parapsilosis was also examined by flow cytometry, revealing that both strains were internelized to the similar extent by macrophages. Additionally, quantitative imaging analysis revealed that the rate of phagolysosome fusion was higher in case of lip−/−C. parapsilosis. Interestingly, macrophages stimulated with lip−/−C. parapsilosis showed at least 1.5-fold higher expression of TNFα, IL-1β, IL-6, IL-8, and PTGS-2 after 12 h compared with those infected with wt C. parapsilosis, as determined by qRT-PCR. Furthermore, the lip−/−C. parapsilosis strain induced significantly higher TNFα, IL-1β, IL-6, and IL-10 protein production in macrophages after 24 h compared with the wt strain. These findings confirm the role of fungal lipases as important virulence factors during C. parapsilosis infection.


Virulence | 2015

Candida parapsilosis produces prostaglandins from exogenous arachidonic acid and OLE2 is not required for their synthesis

Zsuzsanna Grózer; Adél Tóth; Renáta Tóth; Anita Kecskeméti; Csaba Vágvölgyi; Joshua D. Nosanchuk; András Szekeres; Attila Gácser

Prostaglandins are C20 fatty acid metabolites with diverse biological functions. In mammalian cells, prostaglandins are produced from arachidonic acid (AA) via cyclooxygenases (COX1 and COX2). Although fungi do not possess cyclooxygenase homologues, several pathogenic species are able to produce prostaglandins from host-derived arachidonic acid. In this study, we characterized the prostaglandin profile of the emerging human pathogen Candida parapsilosis with HPLC-MS and compared it to that of C. albicans. We found that both species synthesized prostaglandins (mainly PGD2 and PGE2) from exogenous AA. Furthermore, as OLE2 has been associated with prostaglandin synthesis in C. albicans, we generated homozygous OLE2 deletion mutants in C. parapsilosis and examined their PGE2 production. However, the PGE2 production of the OLE2 KO strain was similar to that of wild type (WT), indicating that OLE2 is not required for prostaglandin synthesis in C. parapsilosis. Interestingly, analyses of the fatty acid composition of WT and OLE2 KO cells by gas chromatography (GC) highlighted the accumulation of palmitoleic and oleic acid in the OLE2 deletion mutant. The OLE2 KO cells were killed more efficiently by human monocytes-derived macrophages (MDMs) as well as induced higher interleukin-10 (IL-10) secretion, indicating that OLE2 affects the virulence of C. parapsilosis. Taken together, these results contribute to the better understanding of fatty acid biosynthesis pathways in C. parapsilosis.


Frontiers in Microbiology | 2014

Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms

Renáta Tóth; Adél Tóth; Csaba Papp; Ferenc Jankovics; Csaba Vágvölgyi; Maria F. Alonso; Judith M. Bain; Lars P. Erwig; Attila Gácser

Even though the number of Candida infections due to non-albicans species like C. parapsilosis has been increasing, little is known about their pathomechanisms. Certain aspects of C. parapsilosis and host interactions have already been investigated; however we lack information about the innate cellular responses toward this species. The aim of our project was to dissect and compare the phagocytosis of C. parapsilosis to C. albicans and to another Candida species C. glabrata by murine and human macrophages by live cell video microscopy. We broke down the phagocytic process into three stages: macrophage migration, engulfment of fungal cells and host cell killing after the uptake. Our results showed increased macrophage migration toward C. parapsilosis and we observed differences during the engulfment processes when comparing the three species. The engulfment time of C. parapsilosis was comparable to that of C. albicans regardless of the pseudohypha length and spatial orientation relative to phagocytes, while the rate of host cell killing and the overall uptake regarding C. parapsilosis showed similarities mainly with C. glabrata. Furthermore, we observed difference between human and murine phagocytes in the uptake of C. parapsilosis. UV-treatment of fungal cells had varied effects on phagocytosis dependent upon which Candida strain was used. Besides statistical analysis, live cell imaging videos showed that this species similarly to the other two also has the ability to survive in host cells via the following mechanisms: yeast replication, and pseudohypha growth inside of phagocytes, exocytosis of fungal cells and also abortion of host cell mitosis following the uptake. According to our knowledge this is the first study that provides a thorough examination of C. parapsilosis phagocytosis and reports intracellular survival mechanisms associated with this species.


Fungal Genetics and Biology | 2014

Transcriptome profile of the murine macrophage cell response to Candida parapsilosis

Tibor Németh; Adél Tóth; Zsuzsanna Hamari; András Falus; Katalin Éder; Csaba Vágvölgyi; Allan J. Guimarães; Joshua D. Nosanchuk; Attila Gácser

Candida parapsilosis is a human fungal pathogen with increasing global significance. Understanding how macrophages respond to C. parapsilosis at the molecular level will facilitate the development of novel therapeutic paradigms. The complex response of murine macrophages to infection with C. parapsilosis was investigated at the level of gene expression using an Agilent mouse microarray. We identified 155 and 511 differentially regulated genes at 3 and 8h post-infection, respectively. Most of the upregulated genes encoded molecules involved in immune response and inflammation, transcription, signaling, apoptosis, cell cycle, electron transport and cell adhesion. Typical of the classically activated macrophages, there was significant upregulation of genes coordinating the production of inflammatory cytokines such as TNF, IL-1 and IL-15. Further, we used both primary murine macrophages and macrophages differentiated from human peripheral mononuclear cells to confirm the upregulation of the TNF-receptor family member TNFRSF9 that is associated with Th1 T-helper cell responses. Additionally, the microarray data indicate significant differences between the response to C. parapsilosis infection and that of C. albicans.


Scientific Reports | 2017

Specific pathways mediating inflammasome activation by Candida parapsilosis

Adél Tóth; Erik Zajta; Katalin Csonka; Csaba Vágvölgyi; Mihai G. Netea; Attila Gácser

Candida albicans and C. parapsilosis are human pathogens causing severe infections. The NLRP3 inflammasome plays a crucial role in host defence against C. albicans, but it has been previously unknown whether C. parapsilosis activates this complex. Here we show that C. parapsilosis induces caspase-1 activation and interleukin-1β (IL-1β) secretion in THP-1, as well as primary, human macrophages. IL-1β secretion was dependent on NLRP3, K+-efflux, TLR4, IRAK, Syk, caspase-1, caspase-8 and NADPH-oxidase. Importantly, while C. albicans induced robust IL-1β release after 4 h, C. parapsilosis was not able to stimulate the production of IL-1β after this short incubation period. We also found that C. parapsilosis was phagocytosed to a lesser extent, and induced significantly lower ROS production and lysosomal cathepsin B release compared to C. albicans, suggesting that the low extent of inflammasome activation by C. parapsilosis may result from a delay in the so-called “signal 2”. In conclusion, this is the first study to examine the molecular pathways responsible for the IL-1β production in response to a non-albicans Candida species, and these results enhance our understanding about the immune response against C. parapsilosis.


SpringerPlus | 2016

Analysis of oral yeast microflora in patients with oral squamous cell carcinoma

Csaba Berkovits; Adél Tóth; Judit Szenzenstein; Tünde Deák; Edit Urbán; Attila Gácser; Katalin Nagy

BackgroundOral squamous cell carcinoma (OSCC) is the most common form of oral cancer, in this study, the association between OSCC and oral yeast carriage was investigated.Findings20 patients having OSCC as well as 40 healthy controls were tested for the presence of yeasts in the oral cavity. Fungal burdens were examined by colony forming unit determinations, while the different yeast genera in patient samples were identified by matrix-associated laser desorption/ionization-time of flight-mass spectrometry. We found that the level of oral yeast carriage was significantly higher in patients with OSCC that was accompanied by a higher diversity of yeasts in the oral cavity of these patients. We also examined the extracellular enzyme production of isolated Candida spp.; however, we found that there was no association between the lipase/protease producing capacity of Candida strains and the higher colonisation rate of neoplastic epithelium.ConclusionsIn conclusion, our results corroborate the findings of previous studies regarding the association between oral yeast carriage and epithelial carcinoma.

Collaboration


Dive into the Adél Tóth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua D. Nosanchuk

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Csaba Vizler

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge