Adele L. Marston
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adele L. Marston.
Gene | 1999
Peter J. Lewis; Adele L. Marston
We report the development of a series of plasmid vectors for the construction of fusions to mutants of the intrinsically fluorescent green fluorescent protein, GFPmut1 (Cormack et al., 1996. Gene 173, 33-38) and GFPuv (Crameri et al., 1996. Nature Biotechnology 14, 315-319). Both N- and C-terminal fusions can be produced, and their expression can be finely controlled from the inducible Pxyl promoter following double crossover integration into the amyE locus of the Bacillus subtilis chromosome. Other vectors designed for single crossover insertion into the chromosome allow downstream genes to be placed under inducible control. We also show that fusions to GFPmut1 and GFPuv can be co-localized within the cell by virtue of their different excitation spectra.
Nature Reviews Molecular Cell Biology | 2004
Adele L. Marston; Angelika Amon
Meiosis is the type of cell division that gives rise to eggs and sperm. Errors in the execution of this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Here, we review recent findings on how cell-cycle controls ensure the coordination of meiotic events, with a particular focus on the segregation of chromosomes.
Molecular Cell | 1999
Adele L. Marston; Jeffery Errington
The Spo0J and Soj proteins of B. subtilis belong to a widespread family of bacterial proteins required for accurate segregation of plasmids and chromosomes. Spo0J binds to several sites around the oriC region of the chromosome, which are organized into compact foci that may play a centromere-like role in active chromosome segregation. We now show that Soj has a role in organization or compaction of Spo0J-oriC complexes and possibly other regions of the nucleoid. This activity is accompanied by a dynamic localization pattern in which Soj protein undergoes assembly and disassembly into large nucleoid-associated patches on a timescale of minutes. The dynamic behavior of Soj, like its previously described transcriptional repression activity, is controlled by Spo0J. These interactions may constitute a checkpoint coupling developmental transcription to cell cycle progression.
Molecular Microbiology | 1999
Adele L. Marston; Jeffery Errington
Bacterial cell division commences with the assembly of the tubulin‐like protein, FtsZ, at midcell to form a ring. Division site selection in rod‐shaped bacteria is mediated by MinC and MinD, which form a division inhibitor. Bacillus subtilis DivIVA protein ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at midcell. We have examined the localization of MinC protein and show that it is targeted to midcell and retained at the mature cell poles. This localization is reminiscent of the pattern previously described for MinD. Localization of MinC requires both early (FtsZ) and late (PbpB) division proteins, and it is completely dependent on MinD. The effects of a divIVA mutation on localization of MinC now suggest that the main role of DivIVA is to retain MinCD at the cell poles after division, rather than recruitment to nascent division sites. By overexpressing minC or minD, we show that both proteins are required to block division, but that only MinD needs to be in excess of wild‐type levels. The results suggest a mechanism whereby MinD is required both to pilot MinC to the cell poles and to constitute a functional division inhibitor.
Developmental Cell | 2003
Adele L. Marston; Brian Lee; Angelika Amon
During meiosis, DNA replication is followed by two consecutive rounds of chromosome segregation. Cells lacking the protein phosphatase CDC14 or its regulators, SPO12 and SLK19, undergo only a single meiotic division, with some chromosomes segregating reductionally and others equationally. We find that this abnormal chromosome behavior is due to an uncoupling of meiotic events. Anaphase I spindle disassembly is delayed in cdc14-1, slk19Delta, or spo12Delta mutants, but the chromosome segregation cycle continues, so that both meiotic chromosome segregation phases take place on the persisting meiosis I spindle. Our results show that Cdc14, Slk19, and Spo12 are not only required for meiosis I spindle disassembly but also play a pivotal role in establishing two consecutive chromosome segregation phases, a key feature of the meiotic cell cycle.
PLOS Genetics | 2009
Josefin Fernius; Adele L. Marston
The cohesin complex holds sister chromatids together from the time of their duplication in S phase until their separation during mitosis. Although cohesin is found along the length of chromosomes, it is most abundant at the centromere and surrounding region, the pericentromere. We show here that the budding yeast Ctf19 kinetochore subcomplex and the replication fork-associated factor, Csm3, are both important mediators of pericentromeric cohesion, but they act through distinct mechanisms. We show that components of the Ctf19 complex direct the increased association of cohesin with the pericentromere. In contrast, Csm3 is dispensable for cohesin enrichment in the pericentromere but is essential in ensuring its functionality in holding sister centromeres together. Consistently, cells lacking Csm3 show additive cohesion defects in combination with mutants in the Ctf19 complex. Furthermore, delaying DNA replication rescues the cohesion defect observed in cells lacking Ctf19 complex components, but not Csm3. We propose that the Ctf19 complex ensures additional loading of cohesin at centromeres prior to passage of the replication fork, thereby ensuring its incorporation into functional linkages through a process requiring Csm3.
Current Biology | 2001
Adele L. Marston; Tracy Chen; Melody C. Yang; Pierre Belhumeur; John Chant
GTPases are widespread in directing cytoskeletal rearrangements and affecting cellular organization. How they do so is not well understood. Yeast cells divide by budding, which occurs in two spatially programmed patterns, axial or bipolar [1-3]. Cytoskeletal polarization to form a bud is governed by the Ras-like GTPase, Bud1/Rsr1, in response to cortical landmarks. Bud1 is uniformly distributed on the plasma membrane, so presumably its regulators, Bud5 GTPase exchange factor and Bud2 GTPase activating protein, impart spatial specificity to Bud1 action [4]. We examined the localizations of Bud5 and Bud2. Both Bud1 regulators associate with cortical landmarks designating former division sites. In haploids, Bud5 forms double rings that encircle the mother-bud neck and split upon cytokinesis so that each progeny cell inherits Bud5 at the axial division remnant. Recruitment of Bud5 into these structures depends on known axial landmark components. In cells undergoing bipolar budding, Bud5 associates with multiple sites, in response to the bipolar landmarks. Like Bud5, Bud2 associates with the axial division remnant, but rather than being inherited, Bud2 transiently associates with the remnant in late G1, before condensing into a patch at the incipient bud site. The relative timing of Bud5 and Bud2 localizations suggests that both regulators contribute to the spatially specific control of Bud1 GTPase.
Genes & Development | 2009
Dean Clift; Farid Bizzari; Adele L. Marston
Chromosome segregation is triggered by separase, an enzyme that cleaves cohesin, the protein complex that holds sister chromatids together. Separase activation requires the destruction of its inhibitor, securin, which occurs only upon the correct attachment of chromosomes to the spindle. However, other mechanisms restrict separase activity to the appropriate window in the cell cycle because cohesin is cleaved in a timely manner in securin-deficient cells. We investigated the mechanism by which the protector protein Shugoshin counteracts cohesin cleavage in budding yeast. We show that Shugoshin can prevent separase activation independently of securin. Instead, PP2A(Cdc55) is essential for Shugoshin-mediated inhibition of separase. Loss of both securin and Cdc55 leads to premature sister chromatid separation, resulting in aneuploidy. We propose that Cdc55 is a separase inhibitor that acts downstream from Shugoshin under conditions where sister chromatids are not under tension.
Genetics | 2014
Adele L. Marston
Studies on budding yeast have exposed the highly conserved mechanisms by which duplicated chromosomes are evenly distributed to daughter cells at the metaphase–anaphase transition. The establishment of proteinaceous bridges between sister chromatids, a function provided by a ring-shaped complex known as cohesin, is central to accurate segregation. It is the destruction of this cohesin that triggers the segregation of chromosomes following their proper attachment to microtubules. Since it is irreversible, this process must be tightly controlled and driven to completion. Furthermore, during meiosis, modifications must be put in place to allow the segregation of maternal and paternal chromosomes in the first division for gamete formation. Here, I review the pioneering work from budding yeast that has led to a molecular understanding of the establishment and destruction of cohesion.
Current Biology | 2013
Josefin Fernius; Olga O. Nerusheva; Stefan Galander; Flavia de Lima Alves; Juri Rappsilber; Adele L. Marston
Summary Cohesin is a conserved ring-shaped multiprotein complex that participates in chromosome segregation, DNA repair, and transcriptional regulation [1, 2]. Cohesin loading onto chromosomes universally requires the Scc2/4 “loader” complex (also called NippedBL/Mau2), mutations in which cause the developmental disorder Cornelia de Lange syndrome in humans [1–9]. Cohesin is most concentrated in the pericentromere, the region surrounding the centromere [10–15]. Enriched pericentromeric cohesin requires the Ctf19 kinetochore subcomplex in budding yeast [16–18]. Here, we uncover the spatial and temporal determinants for Scc2/4 centromere association. We demonstrate that the critical role of the Ctf19 complex is to enable Scc2/4 association with centromeres, through which cohesin loads and spreads onto the adjacent pericentromere. We show that, unexpectedly, Scc2 association with centromeres depends on cohesin itself. The absence of the Scc1/Mcd1/Rad21 cohesin subunit precludes Scc2 association with centromeres from anaphase until late G1. Expression of SCC1 is both necessary and sufficient for the binding of cohesin to its loader, the association of Scc2 with centromeres, and cohesin loading. We propose that cohesin triggers its own loading by enabling Scc2/4 to connect with chromosomal landmarks, which at centromeres are specified by the Ctf19 complex. Overall, our findings provide a paradigm for the spatial and temporal control of cohesin loading.