Adéle McLeod
Stellenbosch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adéle McLeod.
Plant Disease | 2012
Hu C-H; Perez Fg; Ryan S. Donahoo; Adéle McLeod; Kevin Myers; Ivors K; Gary A. Secor; Pamela D. Roberts; Kenneth L. Deahl; William E. Fry; Jean Beagle Ristaino
Isolates of Phytophthora infestans (n = 178) were collected in 2002 to 2009 from the eastern United States, Midwestern United States, and eastern Canada. Multilocus genotypes were defined using allozyme genotyping, and DNA fingerprinting with the RG-57 probe. Several previously described and three new mulitilocus genotypes were detected. The US-8 genotype was found commonly on commercial potato crops but not on tomato. US-20 was found on tomato in North Carolina from 2002 through 2007 and in Florida in 2005. US-21 was found on tomato in North Carolina in 2005 and Florida in 2006 and 2007. US-22 was detected on tomato in 2007 in Tennessee and New York and became widespread in 2009. US-22 was found in 12 states on tomato and potato and was spread on tomato transplants. This genotype accounted for about 60% of all the isolates genotyped. The US-23 genotype was found in Maryland, Virginia, Pennsylvania, and Delaware on both tomato and potato in 2009. The US-24 genotype was found only in North Dakota in 2009. A1 and A2 mating types were found in close proximity on potato and tomato crops in Pennsylvania and Virginia; therefore, the possibility of sexual reproduction should be monitored. Whereas most individuals of US-8 and US-20 were resistant to mefenoxam, US-21 appeared to be intermediately sensitive, and isolates of US-22, US-23, and US-24 were largely sensitive to mefenoxam. On the basis of sequence analysis of the ras gene, these latter three genotypes appear to have been derived from a common ancestor. Further field and laboratory studies are underway using simple sequence repeat genotyping to monitor current changes in the population structure of P. infestans causing late blight in North America.
Plant Disease | 2013
William E. Fry; Margaret T. McGrath; Abby Seaman; Thomas A. Zitter; Adéle McLeod; Giovanna Danies; Ian Small; Kevin Myers; Kathryne L. Everts; A. J. Gevens; Beth K. Gugino; S. B. Johnson; Howard S. Judelson; Jean Beagle Ristaino; Pamela D. Roberts; Gary A. Secor; K. Seebold; K. Snover-Clift; A. Wyenandt; Niklaus J. Grünwald; Christine D. Smart
The tomato late blight pandemic of 2009 made late blight into a household term in much of the eastern United States. Many home gardeners and many organic producers lost most if not all of their tomato crop, and their experiences were reported in the mainstream press. Some CSAs (Community Supported Agriculture) could not provide tomatoes to their members. In response, many questions emerged: How did it happen? What was unusual about this event compared to previous late blight epidemics? What is the current situation in 2012 and what can be done? Its easiest to answer these questions, and to understand the recent epidemics of late blight, if one knows a bit of the history of the disease and the biology of the causal agent, Phytophthora infestans.
European Journal of Plant Pathology | 2011
Yared T. Tewoldemedhin; Mark Mazzola; Lizel Mostert; Adéle McLeod
Cylindrocarpon species are known to be a component of the pathogen/pest complex that incites apple replant disease. In South Africa, no information is available on apple associated Cylindrocarpon species and their pathogenicity. Therefore, these aspects were investigated. Among the isolates recovered from apple roots in South Africa, four species (C. destructans, C. liriodendri, C. macrodidymum and C. pauciseptatum) were identified using β-tubulin gene sequencing and phylogenetic analysis. This is the first report of C. liriodendri, C. macrodidymum and C. pauciseptatum on apple trees. Cylindrocarpon macrodidymum was the most prevalent. Isolates within each of the four species were pathogenic towards apple seedlings, but varied in their virulence. With a single exception, all isolates were able to induce lesion development on seedling roots. Only 57% of the isolates, which represented all four species, were able to cause a significant reduction in seedling weight and/or height. The greatest seedling growth reductions were caused by two isolates of C. destructans, and one isolate each of C. liriodendri and C. macrodidymum. A quantitative real-time polymerase chain reaction (qPCR) method was developed for simultaneous detection of all four Cylindrocarpon species. qPCR analyses of Cylindrocarpon from the roots of inoculated seedlings showed that the amount of Cylindrocarpon DNA in roots was not correlated to seedling growth reductions (weight and height) or root rot. The qPCR method is, however, very useful for the rapid identification of apple associated Cylindrocarpon species in roots. The technique may also hold potential for being indicative of Cylindrocarpon disease potential if rhizosphere soil rather than roots are used.
Eukaryotic Cell | 2004
Adéle McLeod; Christine D. Smart; William E. Fry
ABSTRACT We have investigated the core promoter structure of the oomycete Phytophthora infestans. The transcriptional start sites (TSS) of three previously characterized P. infestans genes, Piexo1, Piexo3, and Piendo1, were determined by primer extension analyses. The TSS regions were homologous to a previously identified 16-nucleotide (nt) core sequence that overlaps the TSS in most oomycete genes. The core promoter regions of Piexo1 and Piendo1 were investigated by using a transient protoplast expression assay and the reporter gene β-glucuronidase. Mutational analyses of the promoters of Piexo1 and Piendo1 showed that there is a putative core promoter element encompassing the TSS (−2 to + 5) that has high sequence and functional homology to a known core promoter element present in other eukaryotes, the initiator element (Inr). Downstream and flanking the Inr is a highly conserved oomycete promoter region (+7 to + 15), hereafter referred to as FPR (flanking promoter region), which is also important for promoter function. The importance of the 19-nt core promoter region (Inr and FPR) in Piexo1 and Piendo1 was further investigated through electrophoretic mobility shift assays (EMSA). The EMSA studies showed that (i) both core promoters were able to specifically bind a protein or protein complex in a P. infestans whole-cell protein extract and (ii) the same mutations that reduced binding of the EMSA complex also reduced β-glucuronidase (GUS) levels in transient expression assays. The consistency of results obtained using two different assays (GUS transient assays [in vivo] and EMSA studies [in vitro]) supports a convergence of inference about the relative importance of specific nucleotides within the 19-nt core promoter region.
Fungal Biology | 2009
Adéle McLeod; Wilhelm J. Botha; Julia C. Meitz; Chris F.J. Spies; Yared T. Tewoldemedhin; Lizel Mostert
The genus Pythium is important in agriculture, since it contains many plant pathogenic species, as well as species that can promote plant growth and some that have biocontrol potential. In South Africa, very little is known about the diversity of Pythium species within agricultural soil, irrigation and hydroponic systems. Therefore, the aim of the study was to characterise a selection of 85 Pythium isolates collected in South Africa from 1991 through to 2007. The isolates were characterised morphologically as well as through sequence and phylogenetic analyses of the internal transcribed spacer regions (ITS) and the 5.8S gene of the nuclear ribosomal DNA. Phylogenetic analyses showed that the isolates represented ten of the 11 published Pythium clades [Lévesque & De Cock, 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycological Research 108: 1363-1383]. Characterisation of isolates in clade D and J suggested that the phylogenetic concept of Pythium acanthicum and Pythium perplexum respectively, needs further investigation in order to enable reliable species identification within these clades. Our phylogenetic analyses of Pythium species in clade B also showed that species with globose sporangia group basal within this clade, and are not dispersed within the clade as previously reported. The 85 South African isolates represented 34 known species, of which 20 species have not been reported previously in South Africa. Additionally, three isolates (PPRI 8428, 8300 and 8418) were identified that may each represent putative new species, Pythium sp. WJB-1 to WJB-3.
Plant Disease | 2010
A. R. Dunn; M. G. Milgroom; J. C. Meitz; Adéle McLeod; William E. Fry; Margaret T. McGrath; H. R. Dillard; Christine D. Smart
In 2006, 2007, and 2008, we sampled 257 isolates of Phytophthora capsici from vegetables at 22 sites in four regions of New York, to determine variation in mefenoxam resistance and population genetic structure. Isolates were assayed for mefenoxam resistance and genotyped for mating type and five microsatellite loci. We found mefenoxam-resistant isolates at a high frequency in the Capital District and Long Island, but none were found in western New York or central New York. Both A1 and A2 mating types were found at 12 of the 22 sites, and we detected 126 distinct multilocus genotypes, only nine of which were found at more than one site. Significant differentiation (FST) was found in more than 98% of the pairwise comparisons between sites; approximately 24 and 16% of the variation in the population was attributed to differences among regions and sites, respectively. These results indicate that P. capsici in New York is highly diverse, but gene flow among regions and fields is restricted. Therefore, each field needs to be considered an independent population, and efforts to prevent movement of inoculum among fields need to be further emphasized to prevent the spread of this pathogen.
Fems Microbiology Letters | 2008
Lassaad Belbahri; Adéle McLeod; Bernard Paul; Gautier Calmin; Eduardo Moralejo; Chris F.J. Spies; Wilhelm J. Botha; Antonio Clemente; Enrique Descals; Esperanza Sanchez-Hernandez; François Lefort
Sixteen Pythium isolates from diverse hosts and locations, which showed similarities in their morphology and sequences of the internal transcribed spacer (ITS) region of their rRNA gene, were investigated. As opposed to the generally accepted view, within single isolates ITS sequence variations were consistently found mostly as part of a tract of identical bases (A-T) within ITS1, and of GT or GTTT repeats within the ITS2 sequence. Thirty-one different ITS sequences obtained from 39 cloned ITS products from the 16 isolates showed high sequence and length polymorphisms within and between isolates. However, in a phylogenetic analysis, they formed a cluster distinct from those of other Pythium species. Additional sequencing of two nuclear genes (elongation factor 1 alpha and beta-tubulin) and one mitochondrial gene (nadh1) revealed high levels of heterozygosity as well as polymorphism within and between isolates, with some isolates possessing two or more alleles for each of the nuclear genes. In contrast to the observed variation in the ITS and other gene areas, all isolates were phenotypically similar. Pythium mercuriale sp. nov. (Pythiaceae) is characterized by forming thin-walled chlamydospores, subglobose to obovoid, papillate sporangia proliferating internally and smooth-walled oogonia surrounded by multiple antheridia. Maximum likelihood phylogenetic analyses based on both ITS and beta-tubulin sequence data place P. mercuriale in a clade between Pythium and Phytophthora.
Plant Disease | 2006
Yared T. Tewoldemedhin; Sandra C. Lamprecht; Adéle McLeod; Mark Mazzola
Isolates of Rhizoctonia spp. associated with barley, canola, clover, lucerne, lupin, annual Medicago spp. (medic), and wheat were recovered during the conduct of a 4-year (2000 to 2003) crop rotation trial in the Western Cape province of South Africa. These isolates were characterized by determining their anastomosis group (AG), in vitro optimum growth temperature, and pathogenicity toward emerging and 14-day-old seedlings of all the aforementioned crops. During the 4-year rotational trial, 428 Rhizoctonia isolates, in all, were obtained. The most abundant multinucleate AG was AG-4 HG-II (69%), followed by AG-2-1 (19%), AG-3 (8%), AG-2-2 (2%), and AG-11 (2%). The population of binucleate Rhizoctonia spp. comprised AG-K (53%), AG-A (10%), AG-I (5%), and unidentified AGs (32%). The optimal time for isolating Rhizoctonia spp. was found to be at the flowering or seedpod stage (20 to 22 weeks after planting). Temperature studies showed that isolates belonging to AG-2-2, AG-4 HG-II, and AG-K had significantly higher optimum growth temperatures than those from other AGs. In pathogenicity assays conducted on emerging as well as 14-day-old seedlings, isolates of AG-2-2 and AG-4 HG-II were the most virulent on all crops. Rhizoctonia solani AG-2-1 was highly virulent on canola, moderately virulent on medic and lupin, weakly virulent on lucerne and barley, and nonpathogenic on wheat. AG-11 isolates were moderate to weakly virulent on all crops, with the exception of barley and wheat. AG-3 was weakly virulent on canola, lupin, and medic. AG-K was the only binucleate Rhizoctonia sp. capable of inciting disease in our assays. This is the first comprehensive study to elucidate the identity and potential importance of Rhizoctonia spp. as a yield limiting factor in crop production systems in the Western Cape province of South Africa.
Plant Disease | 2012
I. M. Small; B. C. Flett; W. F. O. Marasas; Adéle McLeod; M. A. Stander; Altus Viljoen
Fusarium ear rot of maize, caused by Fusarium verticillioides, is an important disease affecting maize production worldwide. Apart from reducing yield and grain quality, F. verticillioides produces fumonisins which have been associated with mycotoxicoses of animals and humans. Currently, no maize breeding lines are known with resistance to F. verticillioides in South Africa. The objective of this study, therefore, was to evaluate 24 genetically diverse maize inbred lines as potential sources of resistance to Fusarium ear rot and fumonisin accumulation in field trials at Potchefstroom and Vaalharts in South Africa. After artificial silk channel inoculation with F. verticillioides, Fusarium ear rot development was determined at harvest and fumonisins B1, B2, and B3 quantified. A significant inbred line by location effect was observed for Fusarium ear rot severity (P ≤ 0.001), although certain lines proved to be consistently resistant across both locations. The individual inbred lines also differed considerably in fumonisin accumulation between Potchefstroom and Vaalharts, with differentiation between susceptible and potentially resistant inbred lines only being possible at Vaalharts. A greenhouse inoculation trial was then also performed on a subset of potentially resistant and highly susceptible lines. The inbred lines CML 390, CML 444, CML 182, VO 617Y-2, and RO 549 W consistently showed a low Fusarium ear rot (<5%) incidence at both Potchefstroom and Vaalharts and in the greenhouse. Two of these inbred lines, CML 390 and CML 444, accumulated fumonisin levels <5 mg kg-1. These lines could potentially act as sources of resistance for use within a maize breeding program.
Mycologia | 2014
Z. Gloria Abad; Jorge A. Abad; S. O. Cacciola; A. Pane; Roberto Faedda; Eduardo Moralejo; A. Pérez-Sierra; P. Abad-Campos; Luis A. Álvarez-Bernaola; J. Bakonyi; András Józsa; Maria Luz Herrero; T. Burgess; J. H. Cunnington; I. W. Smith; Yilmaz Balci; C. L. Blomquist; Béatrice Henricot; G. Denton; Chris Spies; Adéle McLeod; Lassaad Belbahri; D. E. L. Cooke; Koji Kageyama; Seiji Uematsu; İlker Kurbetli; Kemal Değirmenci
A non-papillate, heterothallic Phytophthora species first isolated in 2001 and subsequently from symptomatic roots, crowns and stems of 33 plant species in 25 unrelated botanical families from 13 countries is formally described here as a new species. Symptoms on various hosts included crown and stem rot, chlorosis, wilting, leaf blight, cankers and gumming. This species was isolated from Australia, Hungary, Israel, Italy, Japan, the Netherlands, Norway, South Africa, Spain, Taiwan, Turkey, the United Kingdom and United States in association with shrubs and herbaceous ornamentals grown mainly in greenhouses. The most prevalent hosts are English ivy (Hedera helix) and Cistus (Cistus salvifolius). The association of the species with acorn banksia (Banksia prionotes) plants in natural ecosystems in Australia, in affected vineyards (Vitis vinifera) in South Africa and almond (Prunus dulcis) trees in Spain and Turkey in addition to infection of shrubs and herbaceous ornamentals in a broad range of unrelated families are a sign of a wide ecological adaptation of the species and its potential threat to agricultural and natural ecosystems. The morphology of the persistent non-papillate ellipsoid sporangia, unique toruloid lobate hyphal swellings and amphigynous antheridia does not match any of the described species. Phylogenetic analysis based on sequences of the ITS rDNA, EF-1α, and β-tub supported that this organism is a hitherto unknown species. It is closely related to species in ITS clade 7b with the most closely related species being P. sojae. The name Phytophthora niederhauserii has been used in previous studies without the formal description of the holotype. This name is validated in this manuscript with the formal description of Phytophthora niederhauserii Z.G. Abad et J.A. Abad, sp. nov. The name is coined to honor Dr John S. Niederhauser, a notable plant pathologist and the 1990 World Food Prize laureate.