Adeline Seak May Chua
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adeline Seak May Chua.
Biotechnology for Biofuels | 2012
Teck Nam Ang; Gek Cheng Ngoh; Adeline Seak May Chua; Min Gyu Lee
BackgroundIn the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure.ResultsFrom the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling.ConclusionsThe structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments.
Bioresource Technology | 2013
Teck Nam Ang; Gek Cheng Ngoh; Adeline Seak May Chua
The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimization using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimized with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimized condition (0.5% (w/v) HCl loading, 125 °C, 1.5 h) is relatively mild, and resulted in ~22.3mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization studies that involved FT-IR, XRD, SEM, and BET surface area determination showed that the pretreated rice husk consisted mainly of cellulose and lignin. Compared to untreated rice husk, pretreated rice husk possessed increased pore size and pore volume, which are expected to be beneficial for fungal growth during fermentation.
Bioresource Technology | 2010
Gulsum Emel Zengin; Nazik Artan; Derin Orhon; Adeline Seak May Chua; Hiroyasu Satoh; Takashi Mino
The study investigated the effect of glucose feeding as the sole carbon source on population dynamics in a sequencing batch reactor (SBR) operated for enhanced biological phosphorus removal (EBPR). The lab-scale SBR operation was started with a biomass taken from a WWTP plant performing EBPR and continued around two months. It exhibited a sequence of periods with different performance and biomass characteristics. The first period indicated predominant EBPR activity, involving phosphorus release in the anaerobic phase with PHA production as expected. Lactate generated from glucose fermentation was presumably converted to PHA by PAOs as an essential part of the EBPR activity. In the second period a major shift occurred in the population dynamics favoring the preferential growth and the predominance of GAOs which have the advantage of utilizing glucose directly and eventually the EBPR activity was deteriorated. The significant feature of the third period was the proliferation of filamentous microorganisms.
Enzyme and Microbial Technology | 2013
Li Wan Yoon; Gek Cheng Ngoh; Adeline Seak May Chua
This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
Bioresource Technology | 2013
Kiat Moon Lee; Gek Cheng Ngoh; Adeline Seak May Chua
The production of reducing sugars from sago waste via sequential ionic liquid dissolution-solid acid saccharification was optimized in this study. Ionic liquid dissolution of sago waste with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was conducted prior to the solid acid saccharification with Amberlyst 15 (A15). The effect of time, temperature and substrate loading during dissolution reaction; and the effect of time, temperature and catalyst loading during saccharification reaction were examined by applying central composite design (CCD) separately. Both dissolution and saccharification reactions were respectively modeled into quadratic polynomial equations with good predictive accuracies. A high reducing sugars yield of 98.3% was obtained under the optimized conditions, i.e. dissolution at 1.75h, 160°C, 1.5% substrate loading, and saccharification at 0.5h, 130°C, 4% catalyst loading. From comparison studies of different saccharification schemes, the sequential ionic liquid dissolution-solid acid saccharification has proven to be a potential method in reducing sugars production from the lignocellulosic biomass.
Water Environment Research | 2016
Liau Kf; Yeoh Hk; Shoji T; Adeline Seak May Chua; Ho Py
Recently reported kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d) for high-temperature EBPR processes suggested that the absence of glycogen in the model contributed to underestimation of PHA accumulation at 32 °C. Here, two modified ASM2d models were used to further explore the contribution of glycogen in the process. The ASM2d-1G model incorporated glycogen metabolism by PAOs (polyphosphate-accumulating organisms), while the ASM2d-2G model further included processes by GAOs (glycogen-accumulating organisms). These models were calibrated and validated using experimental data at 32 °C. The ASM2d-1G model supported the hypothesis that the excess PHA was attributed to glycogen, but remained inadequate to capture the dynamics of glycogen without considering GAOs activities. The ASM2d-2G model performed better, but it was challenging to calibrate as it often led to wash-out of either PAOs or GAOs. Associated hurdles are highlighted and additional efforts in calibrating ASM2d-2G more effectively are proposed.
14th Asia Pacific Confederation of Chemical Engineering Congress | 2012
Teck Nam Ang; Gek Cheng Ngoh; Adeline Seak May Chua
Rice husk, the by-product of rice milling industry, is a widely available lignocellulosic biomass. In Asia-Pacific region alone, approximately 43.2 metric tonnes of rice husk per year is generated along with the production of rice (FAOSTAT 2010; Hashim et al. 1996). This lignocellulosic agricultural by-product has relatively high cellulose content, and the application of this alternative raw material could improve the process economy of industrial bioprocesses.
Water Science and Technology | 2018
S. W. How; S. Y. Lim; P. B. Lim; A. M. Aris; Gek Cheng Ngoh; Thomas P. Curtis; Adeline Seak May Chua
Intensive aeration for nitrification is a major energy consumer in sewage treatment plants (STPs). Low-dissolved-oxygen (low-DO) nitrification has the potential to lower the aeration demand. However, the applicability of low-DO nitrification in the tropical climate is not well-understood. In this study, the potential of low-DO nitrification in tropical setting was first examined using batch kinetic experiments. Subsequently, the performance of low-DO nitrification was investigated in a laboratory-scale sequential batch reactor (SBR) for 42 days using real tropical sewage. The batch kinetic experiments showed that the seed sludge has a relatively high oxygen affinity. Thus, the rate of nitrification was not significantly reduced at low DO concentrations (0.5 mg/L). During the operation of the low-DO nitrification SBR, 90% of NH4-N was removed. The active low-DO nitrification was mainly attributed to the limited biodegradable organics in the sewage. Fluorescence in-situ hybridisation and 16S rRNA amplicon sequencing revealed the nitrifiers were related to Nitrospira genus and Nitrosomonadaceae family. Phylogenetic analysis suggests 47% of the operational taxonomic units in Nitrospira genus are closely related to a comammox bacteria. This study has demonstrated active low-DO nitrification in tropical setting, which is a more sustainable process that could significantly reduce the energy footprint of STPs.
Applied Microbiology and Biotechnology | 2017
Tadashi Nittami; Masayuki Mukai; Keisuke Uematsu; Li Wan Yoon; Sarah Schroeder; Adeline Seak May Chua; Junji Fukuda; Masafumi Fujita; Robert J. Seviour
Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the “Candidatus Accumulibacter” clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.
Water Science and Technology | 2012
Soo Koon Lee; Hak Koon Yeoh; Adeline Seak May Chua; Gek Cheng Ngoh
The titrimetric method is used for on-site measurement of the concentration of volatile fatty acids (VFAs) in anaerobic treatment. In current practice, specific and interpolated pH-volume data points are used to obtain the concentration of VFA by solving simultaneous equations iteratively to convergence (denoted as SEq). Here, the least squares method (LSM) is introduced as an elegant alternative. Known concentrations of VFA (acetic acid and/or propionic acid) ranging from to 200 to 1,000 mg/L were determined using SEq and LSM. Using standard numbers of data points, SEq gave more accurate results compared with LSM. However, results favoured LSM when all data points in the range were included without any interpolation. For model refinement, unit monovalent activity coefficient (f(m) = 1) was found reasonable and arithmetic averages of dissociation constants and molecular weight of 80 mol% acetic acid were recommended in the model for VFA determination of mixtures. An accurate result was obtained with a mixture containing more VFA (butyric acid and valeric acid). In a typical VFA measurement of real anaerobic effluent, a satisfactory result with an error of 14% was achieved. LSM appears to be a promising mathematical model solver for determination of concentration of VFA in the titrimetric method. Validation of LSM in the presence of other electrolytes deserves further exploration.