Adi Tabib
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adi Tabib.
Immunity | 2015
Chamutal Gur; Yara Ibrahim; Batya Isaacson; Rachel Yamin; Jawad Abed; Moriya Gamliel; Jonatan Enk; Yotam Bar-On; Noah Stanietsky-Kaynan; Shunit Coppenhagen-Glazer; Noam Shussman; Gideon Almogy; Angelica Cuapio; Erhard Hofer; Dror Mevorach; Adi Tabib; Rona Ortenberg; Gal Markel; Karmela Miklić; Stipan Jonjić; Caitlin A. Brennan; Wendy S. Garrett; Gilad Bachrach; Ofer Mandelboim
Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT.
Annals of the New York Academy of Sciences | 2010
Dror Mevorach; Uriel Trahtemberg; Alon Krispin; Mizhir Attalah; Jonathan Zazoun; Adi Tabib; Amir Grau; Inna Verbovetski-Reiner
The clearance of dying cells has become an important field of research. Apart from a significant increase in our understanding of the mechanisms for uptake, cell clearance is a basic mechanism in tissue homeostasis, cancer, resolution of inflammation, induction of tolerance, and autoimmunity. Phagocytosis of dying cells is a complex process, involving many interacting molecules on the dying cell and the phagocyte, and in the microenvironment. Although much is known on the subject, there are many questions and unknown variables that remain under investigation. Naturally, different terms were developed, among which some are misused, leading sometimes to pseudoconflicts of understanding. Several receptors were described as “phosphatidylserine receptor: are they all equal?” We will revise terms such as apoptosis, primary and secondary necrosis, lysed cells, senescent cells, clearance of apoptotic cells, efferocytosis, and more. We will try to point out misnomers, misunderstandings, and contradictions, and to define a consensual vocabulary.
Annals of Neurology | 2016
Dror Mevorach; Inna Reiner; Amir Grau; Uri Ilan; Yackov Berkun; Asaf Ta-Shma; Orly Elpeleg; Zamir Shorer; Shimon Edvardson; Adi Tabib
The objective of this work was to report on the outcome of eculizumab treatment in pediatric patients with recurrent acute predominantly motor, demyelinating neuropathy with conduction block, and chronic hemolysis attributed to p.Cys89Tyr mutation in the CD59 gene.
PLOS ONE | 2009
Adi Tabib; Alon Krispin; Uriel Trahtemberg; Inna Verbovetski; Mario Lebendiker; Tsafi Danieli; Dror Mevorach
In our previous study, we have found that thrombospondin-1 (TSP-1) is synthesized de novo upon monocyte and neutrophil apoptosis, leading to a phagocytic and tolerizing phenotype of dendritic cells (DC), even prior to DC-apoptotic cell interaction. Interestingly, we were able to show that heparin binding domain (HBD), the N-terminal portion of TSP-1, was cleaved and secreted simultaneously in a caspase- and serine protease- dependent manner. In the current study we were interested to examine the role of HBD in the clearance of apoptotic cells, and whether the phagocytic and tolerizing state of DCs is mediated by the HBD itself, or whether the entire TSP-1 is needed. Therefore, we have cloned the human HBD, and compared its interactions with DC to those with TSP-1. Here we show that rHBD by itself is not directly responsible for immune paralysis and tolerizing phenotype of DCs, at least in the monomeric form, but has a significant role in rendering DCs phagocytic. Binding of TSP-1-C-terminal domain on the other hand induces a tolerizing phenotype in dendritic cells.
The New England Journal of Medicine | 2017
Alina Kurolap; Orly Eshach-Adiv; Tova Hershkovitz; Tamar Paperna; Adi Mory; Danit Oz-Levi; Yaniv Zohar; Hanna Mandel; Judith Chezar; David Azoulay; Sarit Peleg; Elizabeth Half; Vered Yahalom; Lilach Finkel; Omer Weissbrod; Dan Geiger; Adi Tabib; Ron Shaoul; Daniella Magen; Lilach Bonstein; Dror Mevorach; Hagit Baris
CD55 (complement decay-accelerating factor) inhibits the alternative and classical arms of the complement pathway. Three patients with protein-losing enteropathy and a genetic variant predicted to result in loss of function of CD55 had a response to eculizumab.
PLOS ONE | 2015
Amir Grau; Adi Tabib; Inna Grau; Inna Reiner; Dror Mevorach
As they undergo phagocytosis, most early apoptotic cells negatively regulate proinflammatory signaling and were suggested as a major mechanism in the resolution of inflammation. The dextran sulfate sodium model is generally viewed as an epithelial damage model suited to investigate innate immune responses. Macrophages primed with LPS and subsequently exposed to DSS secrete high levels of IL-1β in an NLRP3-, ASC-, and caspase-1-dependent manner. The aim of this research was to test the therapeutic effect of a single dose of apoptotic cells in a DSS-colitis model and to explore possible mechanisms. Primary peritoneal macrophages, the DSS mice model, and Nlrp3-deficient mice, were used to assess the effect apoptotic cells on colitis. Immunohistochemistry, flow-cytometer, and western blots helped to explore the effect and mechanisms. Using a variety of NLRP3 triggering mechanisms, we show that apoptotic cells negatively regulate NF-κB and NLRP3 activation in primary peritoneal macrophages, at pre- and post-transcription levels, via inhibition of reactive oxygen species, lysosomal stabilization, and blocking K+ efflux. This property of apoptotic cells is demonstrated in a dramatic clinical, histological, and immunological amelioration of DSS colitis in Balb/c and B6 mice following a single administration of apoptotic cells.
European Journal of Paediatric Neurology | 2015
Bruria Ben-Zeev; Adi Tabib; Andreea Nissenkorn; Ben-Zion Garti; John M. Gomori; Dvora Nass; Hanoch Goldshmidt; Yakov Fellig; Yair Anikster; Yoram Nevo; Orly Elpeleg; Dror Mevorach
Identification of CD59 p.Cys89Tyr mutation in 5 patients from North-African Jewish origin presenting with chronic inflammatory demyelinating polyradiculoneuropathy like disease and chronic hemolysis, led us to reinvestigate an unsolved disease in 2 siblings from the same origin who died 17 years ago. The two patients carried the same CD59 gene mutation previously described by our group. These children had quiet similar disease course but in addition developed devastating recurrent brain infarctions, retinal and optic nerve involvement. Revising the brain autopsy of one of these patients confirmed the finding of multiple brain infarctions of different ages. CD59 protein expression was missing on brain endothelial cells by immunohistochemical staining. This new data expands the clinical spectrum of CD59 mutations and further emphasizes the need for its early detection and treatment.
PLOS ONE | 2016
Uriel Trahtemberg; Amir Grau; Adi Tabib; Mizhir Atallah; Alon Krispin; Dror Mevorach; Ari Waisman
Human monocyte-derived dendritic cells (mdDCs) are versatile cells that are used widely for research and experimental therapies. Although different culture conditions can affect their characteristics, there are no known subpopulations. Since monocytes differentiate into dendritic cells (DCs) in a variety of tissues and contexts, we asked whether they can give rise to different subpopulations. In this work we set out to characterize two human mdDC subpopulations that we identified and termed small (DC-S) and large (DC-L). Morphologically, DC-L are larger, more granular and have a more complex cell membrane. Phenotypically, DC-L show higher expression of a wide panel of surface molecules and stronger responses to maturation stimuli. Transcriptomic analysis confirmed their separate identities and findings were consistent with the phenotypes observed. Although they show similar apoptotic cell uptake, DC-L have different capabilities for phagocytosis, demonstrate better antigen processing, and have significantly better necrotic cell uptake. These subpopulations also have different patterns of cell death, with DC-L presenting an inflammatory, “dangerous” phenotype while DC-S mostly downregulate their surface markers upon cell death. Apoptotic cells induce an immune-suppressed phenotype, which becomes more pronounced among DC-L, especially after the addition of lipopolysaccharide. We propose that these two subpopulations correspond to inflammatory (DC-L) and steady-state (DC-S) DC classes that have been previously described in mice and humans.
Molecular Immunology | 2017
Adi Tabib; Netanel Karbian; Dror Mevorach
Neurological symptoms of patients with p.Cys89Tyr mutation in the CD59 gene include recurrent peripheral neuropathy resembling Guillain-Barré syndrome, characterized by sensory-motor demyelinating neuropathy with secondary axonal damage and moderate enhancement of the nerve roots on spine MRI, together with recurrent strokes and retinal involvement. Three additional mutations in CD59, leading to loss of function, have been described, and overall, 12/12 (100%) of patients with any mutation presented with neurological symptoms; 11/12 (92%) patients presented with recurrent peripheral neuropathy, 6/12 (50%) with recurrent strokes, and 1/12 (8%) with retinal involvement. We review the possible thrombophilic profile associated with the mutations. In these patients, excessive intravascular hemolysis saturates scavenger mechanisms resulting in free hemoglobin in plasma that irreversibly reacts with nitric oxide to form nitrate and methemoglobin, leading to arterial thrombosis. CD59 loss of function is also one of the major thrombophilic mechanisms in patients with paroxysmal nocturnal hemoglobinuria. We then describe the relationship with demyelination. The lack of CD59 allows uncontrolled complement amplification following low-level spontaneous-, viral-, or post viral-induced complement activation, resulting in severe demyelination in the peripheral nervous system. It is interesting, and certainly encouraging, that after 3 years, following 4 patients with Cys89Tyr mutations who are treated with eculizumab, no strokes occurred and non-permanent neurological insults underwent resolution without any new neurological exacerbations.
Thrombosis Research | 2018
Adi Tabib; Issam Hindi; Netanel Karbian; Orly Zelig; Batla Falach; Dror Mevorach
BACKGROUND Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. METHODS Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. FINDINGS 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. INTERPRETATION Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases.