Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adil Daud is active.

Publication


Featured researches published by Adil Daud.


The New England Journal of Medicine | 2012

Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations

Keith T. Flaherty; Jeffery R. Infante; Adil Daud; Rene Gonzalez; Richard F. Kefford; Jeffrey A. Sosman; Omid Hamid; Lynn M. Schuchter; Jonathan Cebon; Nageatte Ibrahim; Ragini Kudchadkar; Howard A. Burris; Gerald S. Falchook; Alain Patrick Algazi; Karl D. Lewis; Igor Puzanov; Peter F. Lebowitz; Ajay Singh; Shonda M Little; Peng Sun; Alicia Allred; Daniele Ouellet; Kevin B. Kim; Kiran Patel; Jeffrey S. Weber

BACKGROUND Resistance to therapy with BRAF kinase inhibitors is associated with reactivation of the mitogen-activated protein kinase (MAPK) pathway. To address this problem, we conducted a phase 1 and 2 trial of combined treatment with dabrafenib, a selective BRAF inhibitor, and trametinib, a selective MAPK kinase (MEK) inhibitor. METHODS In this open-label study involving 247 patients with metastatic melanoma and BRAF V600 mutations, we evaluated the pharmacokinetic activity and safety of oral dabrafenib (75 or 150 mg twice daily) and trametinib (1, 1.5, or 2 mg daily) in 85 patients and then randomly assigned 162 patients to receive combination therapy with dabrafenib (150 mg) plus trametinib (1 or 2 mg) or dabrafenib monotherapy. The primary end points were the incidence of cutaneous squamous-cell carcinoma, survival free of melanoma progression, and response. Secondary end points were overall survival and pharmacokinetic activity. RESULTS Dose-limiting toxic effects were infrequently observed in patients receiving combination therapy with 150 mg of dabrafenib and 2 mg of trametinib (combination 150/2). Cutaneous squamous-cell carcinoma was seen in 7% of patients receiving combination 150/2 and in 19% receiving monotherapy (P=0.09), whereas pyrexia was more common in the combination 150/2 group than in the monotherapy group (71% vs. 26%). Median progression-free survival in the combination 150/2 group was 9.4 months, as compared with 5.8 months in the monotherapy group (hazard ratio for progression or death, 0.39; 95% confidence interval, 0.25 to 0.62; P<0.001). The rate of complete or partial response with combination 150/2 therapy was 76%, as compared with 54% with monotherapy (P=0.03). CONCLUSIONS Dabrafenib and trametinib were safely combined at full monotherapy doses. The rate of pyrexia was increased with combination therapy, whereas the rate of proliferative skin lesions was nonsignificantly reduced. Progression-free survival was significantly improved. (Funded by GlaxoSmithKline; ClinicalTrials.gov number, NCT01072175.).


Journal of Clinical Oncology | 2009

Results of a Phase III, Randomized, Placebo-Controlled Study of Sorafenib in Combination With Carboplatin and Paclitaxel As Second-Line Treatment in Patients With Unresectable Stage III or Stage IV Melanoma

Axel Hauschild; Sanjiv S. Agarwala; Uwe Trefzer; David Hogg; Caroline Robert; Peter Hersey; Alexander M.M. Eggermont; Stephan Grabbe; Rene Gonzalez; Jens Gille; Christian Peschel; Dirk Schadendorf; Claus Garbe; Steven O'Day; Adil Daud; J. Michael White; Chenghua Xia; Kiran Patel; John M. Kirkwood; Ulrich Keilholz

PURPOSE This phase III, randomized, double-blind, placebo-controlled study was conducted to evaluate the efficacy and safety of sorafenib with carboplatin and paclitaxel (CP) in patients with advanced melanoma who had progressed on a dacarbazine- or temozolomide-containing regimen. PATIENTS AND METHODS A total of 270 patients were randomly assigned to receive intravenous paclitaxel 225 mg/m2 plus intravenous carboplatin at area under curve 6 (AUC 6) on day 1 of a 21-day cycle followed by either placebo (n = 135) or oral sorafenib 400 mg (n = 135) twice daily on days 2 to 19. The primary efficacy end point was progression-free survival (PFS); secondary and tertiary end points included overall survival and incidence of best response, respectively. RESULTS The median PFS was 17.9 weeks for the placebo plus CP arm and 17.4 weeks for the sorafenib plus CP arm (hazard ratio, 0.91; 99% CI, 0.63 to 1.31; two-sided log-rank test P = .49). Response rate was 11% with placebo versus 12% with sorafenib. Dermatologic events, grade 3 thrombocytopenia, diarrhea, and fatigue were more common in patients treated with sorafenib plus CP versus placebo plus CP. CONCLUSION In this study, the addition of sorafenib to CP did not improve any of the end points over placebo plus CP and cannot be recommended in the second-line setting for patients with advanced melanoma. Both regimens had clinically acceptable toxicity profiles with no unexpected adverse events. A trial of similar design for the first-line treatment of patients with advanced melanoma (intergroup trial E2603) is currently ongoing.


The New England Journal of Medicine | 2016

PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma

Paul Nghiem; Shailender Bhatia; Evan J. Lipson; Ragini R. Kudchadkar; Natalie J. Miller; Lakshmanan Annamalai; Sneha Berry; Elliot Chartash; Adil Daud; Steven P. Fling; Philip Friedlander; Harriet M. Kluger; Holbrook Kohrt; Lisa Lundgren; Kim Margolin; Alan Mitchell; Thomas Olencki; Drew M. Pardoll; Sunil Reddy; Erica Shantha; William H. Sharfman; Elad Sharon; Lynn R. Shemanski; Michi M. Shinohara; Joel C. Sunshine; Janis M. Taube; John A. Thompson; Steven M. Townson; Jennifer H. Yearley; Suzanne L. Topalian

BACKGROUND Merkel-cell carcinoma is an aggressive skin cancer that is linked to exposure to ultraviolet light and the Merkel-cell polyomavirus (MCPyV). Advanced Merkel-cell carcinoma often responds to chemotherapy, but responses are transient. Blocking the programmed death 1 (PD-1) immune inhibitory pathway is of interest, because these tumors often express PD-L1, and MCPyV-specific T cells express PD-1. METHODS In this multicenter, phase 2, noncontrolled study, we assigned adults with advanced Merkel-cell carcinoma who had received no previous systemic therapy to receive pembrolizumab (anti-PD-1) at a dose of 2 mg per kilogram of body weight every 3 weeks. The primary end point was the objective response rate according to Response Evaluation Criteria in Solid Tumors, version 1.1. Efficacy was correlated with tumor viral status, as assessed by serologic and immunohistochemical testing. RESULTS A total of 26 patients received at least one dose of pembrolizumab. The objective response rate among the 25 patients with at least one evaluation during treatment was 56% (95% confidence interval [CI], 35 to 76); 4 patients had a complete response, and 10 had a partial response. With a median follow-up of 33 weeks (range, 7 to 53), relapses occurred in 2 of the 14 patients who had had a response (14%). The response duration ranged from at least 2.2 months to at least 9.7 months. The rate of progression-free survival at 6 months was 67% (95% CI, 49 to 86). A total of 17 of the 26 patients (65%) had virus-positive tumors. The response rate was 62% among patients with MCPyV-positive tumors (10 of 16 patients) and 44% among those with virus-negative tumors (4 of 9 patients). Drug-related grade 3 or 4 adverse events occurred in 15% of the patients. CONCLUSIONS In this study, first-line therapy with pembrolizumab in patients with advanced Merkel-cell carcinoma was associated with an objective response rate of 56%. Responses were observed in patients with virus-positive tumors and those with virus-negative tumors. (Funded by the National Cancer Institute and Merck; ClinicalTrials.gov number, NCT02267603.).


Cancer Research | 2005

Valproic Acid Alters Chromatin Structure by Regulation of Chromatin Modulation Proteins

Douglas C. Marchion; Elona Bicaku; Adil Daud; Daniel M. Sullivan; Pamela N. Munster

Histone acetylation and deacetylation are crucial in the regulation of gene expression. Dynamic changes in gene expression may affect chromatin structure and, consequently, the interaction of chromatin with regulatory factors. In this study, the effects of the antiseizure drug valproic acid (VPA) on the expression of genes that regulate the structure of chromatin and the access of macromolecules to the DNA were investigated. Exposure of breast cancer cells to VPA resulted in rapid dose-dependent hyperacetylation of the histones H3 and H4. VPA further induced a depletion of several members of the structural maintenance of chromatin (SMC) proteins, SMC-associated proteins, DNA methyltransferase, and heterochromatin proteins. Down-regulation of these proteins was associated with chromatin decondensation. The observed alterations of chromatin structure correlated with enhanced sensitivity of DNA to nucleases and increased interaction of DNA with intercalating agents. VPA-induced chromatin decondensation led to a sequence-specific potentiation of DNA-damaging agents in cell culture and xenograft models. Modulation of heterochromatin maintenance proteins was not a direct, but a downstream, effect of histone acetylation. The effects on the chromatin structure were reversible upon drug withdrawal, but obligatory for the potentiation of DNA-damaging agents. In addition to their antitumor activity as single agents, the chromatin decondensation induced by histone deacetylase inhibitors may enhance the efficacy of cytotoxic agents that act by targeting DNA. The proposed mechanism of action suggests an effect of drug sequencing on the antitumor activity of these drugs.


Journal of Cellular Biochemistry | 2004

Sequence‐specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid

Douglas C. Marchion; Elona Bicaku; Adil Daud; Victoria M. Richon; Daniel M. Sullivan; Pamela N. Munster

Acetylation of histones leads to conformational changes of DNA. We have previously shown that the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induced cell cycle arrest, differentiation, and apoptosis. In addition to their antitumor effects as single agents, HDAC inhibitors may cause conformational changes in the chromatin, rendering the DNA more vulnerable to DNA damaging agents. We examined the effects of SAHA on cell death induced by topo II inhibitors in breast cancer cell lines. Topo II inhibitors stabilize the topo II–DNA complex, resulting in DNA damage. Treatment of cells with SAHA promoted chromatin decondensation associated with increased nuclear concentration and DNA binding of the topo II inhibitor and subsequent potentiation of DNA damage. While SAHA‐induced histone hyperacetylation occurred as early as 4 h, chromatin decondensation was most profound at 48 h. SAHA‐induced potentiation of topo II inhibitors was sequence‐specific. Pre‐exposure of cells to SAHA for 48 h was synergistic, whereas shorter pre‐exposure periods abrogated synergy and exposure of cells to SAHA after the topo II inhibitor resulted in antagonistic effects. Synergy was not observed in cells with depleted topo II levels. These effects were not limited to specific types of topo II inhibitors. We propose that SAHA significantly potentiates the DNA damage induced by topo II inhibitors; however, synergy is dependent on the sequence of drug administration and the expression of the target. These findings may impact the clinical development of combining HDAC inhibitors with DNA damaging agents.


Journal of Clinical Oncology | 2015

Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600–Mutant Colorectal Cancer

Ryan B. Corcoran; Chloe Evelyn Atreya; Gerald S. Falchook; Eunice L. Kwak; David P. Ryan; Johanna C. Bendell; Omid Hamid; Wells A. Messersmith; Adil Daud; Razelle Kurzrock; Mariaelena Pierobon; Peng Sun; Elizabeth Cunningham; Shonda M Little; Monica Motwani; Yuchen Bai; Kiran Patel; Alan P. Venook; Scott Kopetz

PURPOSE To evaluate dabrafenib, a selective BRAF inhibitor, combined with trametinib, a selective MEK inhibitor, in patients with BRAF V600-mutant metastatic colorectal cancer (mCRC). PATIENTS AND METHODS A total of 43 patients with BRAF V600-mutant mCRC were treated with dabrafenib (150 mg twice daily) plus trametinib (2 mg daily), 17 of whom were enrolled onto a pharmacodynamic cohort undergoing mandatory biopsies before and during treatment. Archival tissues were analyzed for microsatellite instability, PTEN status, and 487-gene sequencing. Patient-derived xenografts were established from core biopsy samples. RESULTS Of 43 patients, five (12%) achieved a partial response or better, including one (2%) complete response, with duration of response > 36 months; 24 patients (56%) achieved stable disease as best confirmed response. Ten patients (23%) remained in the study > 6 months. All nine evaluable during-treatment biopsies had reduced levels of phosphorylated ERK relative to pretreatment biopsies (average decrease ± standard deviation, 47% ± 24%). Mutational analysis revealed that the patient achieving a complete response and two of three evaluable patients achieving a partial response had PIK3CA mutations. Neither PTEN loss nor microsatellite instability correlated with efficacy. Responses to dabrafenib plus trametinib were comparable in patient-derived xenograft-bearing mice and the biopsied lesions from each corresponding patient. CONCLUSION The combination of dabrafenib plus trametinib has activity in a subset of patients with BRAF V600-mutant mCRC. Mitogen-activated protein kinase signaling was inhibited in all patients evaluated, but to a lesser degree than observed in BRAF-mutant melanoma with dabrafenib alone. PIK3CA mutations were identified in responding patients and thus do not preclude response to this regimen. Additional studies targeting the mitogen-activated protein kinase pathway in this disease are warranted.


Lancet Oncology | 2014

Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study

Antoni Ribas; Rene Gonzalez; Anna C. Pavlick; Omid Hamid; Thomas F. Gajewski; Adil Daud; Lawrence E. Flaherty; Theodore F. Logan; Bartosz Chmielowski; Karl D. Lewis; Damien Kee; Peter D. Boasberg; Ming Yin; Iris Chan; Luna Musib; Nicholas Choong; Igor Puzanov; Grant A. McArthur

BACKGROUND Addition of a MEK inhibitor to a BRAF inhibitor enhances tumour growth inhibition, delays acquired resistance, and abrogates paradoxical activation of the MAPK pathway in preclinical models of BRAF-mutated melanoma. We assessed the safety and efficacy of combined BRAF inhibition with vemurafenib and MEK inhibition with cobimetinib in patients with advanced BRAF-mutated melanoma. METHODS We undertook a phase 1b study in patients with advanced BRAF(V600)-mutated melanoma. We included individuals who had either recently progressed on vemurafenib or never received a BRAF inhibitor. In the dose-escalation phase of our study, patients received vemurafenib 720 mg or 960 mg twice a day continuously and cobimetinib 60 mg, 80 mg, or 100 mg once a day for either 14 days on and 14 days off (14/14), 21 days on and 7 days off (21/7), or continuously (28/0). The primary endpoint was safety of the drug combination and to identify dose-limiting toxic effects and the maximum tolerated dose. Efficacy was a key secondary endpoint. All patients treated with vemurafenib and cobimetinib were included in safety and efficacy analyses (intention-to-treat). The study completed accrual and all analyses are final. This study is registered with ClinicalTrials.gov, number NCT01271803. FINDINGS 129 patients were treated at ten dosing regimens combining vemurafenib and cobimetinib: 66 had recently progressed on vemurafenib and 63 had never received a BRAF inhibitor. Dose-limiting toxic effects arose in four patients. One patient on a schedule of vemurafenib 960 mg twice a day and cobimetinib 80 mg once a day 14/14 had grade 3 fatigue for more than 7 days; one patient on a schedule of vemurafenib 960 mg twice a day and cobimetinib 60 mg once a day 21/7 had a grade 3 prolongation of QTc; and two patients on a schedule of vemurafenib 960 mg twice a day and cobimetinib 60 mg 28/0 had dose-limiting toxic effects-one developed grade 3 stomatitis and fatigue and one developed arthralgia and myalgia. The maximum tolerated dose was established as vemurafenib 960 mg twice a day in combination with cobimetinib 60 mg 21/7. Across all dosing regimens, the most common adverse events were diarrhoea (83 patients, 64%), non-acneiform rash (77 patients, 60%), liver enzyme abnormalities (64 patients, 50%), fatigue (62 patients, 48%), nausea (58 patients, 45%), and photosensitivity (52 patients, 40%). Most adverse events were mild-to-moderate in severity. The most common grade 3 or 4 adverse events were cutaneous squamous-cell carcinoma (12 patients, 9%; all grade 3), raised amounts of alkaline phosphatase (11 patients, 9%]), and anaemia (nine patients, 7%). Confirmed objective responses were recorded in ten (15%) of 66 patients who had recently progressed on vemurafenib, with a median progression-free survival of 2·8 months (95% CI 2·6-3·4). Confirmed objective responses were noted in 55 (87%) of 63 patients who had never received a BRAF inhibitor, including six (10%) who had a complete response; median progression-free survival was 13·7 months (95% CI 10·1-17·5). INTERPRETATION The combination of vemurafenib and cobimetinib was safe and tolerable when administered at the respective maximum tolerated doses. The combination has promising antitumour activity and further clinical development is warranted in patients with advanced BRAF(V600)-mutated melanoma, particularly in those who have never received a BRAF inhibitor; confirmatory clinical testing is ongoing. FUNDING F Hoffmann-La Roche/Genentech.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo

Christian Posch; Homayoun Moslehi; Luzviminda Feeney; Gary Green; Anoosheh Ebaee; Valentin Feichtenschlager; Kim Chong; Lily Peng; Michelle T. Dimon; Thomas Phillips; Adil Daud; Timothy H. McCalmont; Philip E. LeBoit; Susana Ortiz-Urda

Activating mutations in the neuroblastoma rat sarcoma viral oncogene homolog (NRAS) gene are common genetic events in malignant melanoma being found in 15–25% of cases. NRAS is thought to activate both mitogen activated protein kinase (MAPK) and PI3K signaling in melanoma cells. We studied the influence of different components on the MAP/extracellular signal-regulated (ERK) kinase (MEK) and PI3K/mammalian target of rapamycin (mTOR)-signaling cascade in NRAS mutant melanoma cells. In general, these cells were more sensitive to MEK inhibition compared with inhibition in the PI3K/mTOR cascade. Combined targeting of MEK and PI3K was superior to MEK and mTOR1,2 inhibition in all NRAS mutant melanoma cell lines tested, suggesting that PI3K signaling is more important for cell survival in NRAS mutant melanoma when MEK is inhibited. However, targeting of PI3K/mTOR1,2 in combination with MEK inhibitors is necessary to effectively abolish growth of NRAS mutant melanoma cells in vitro and regress xenografted NRAS mutant melanoma. Furthermore, we showed that MEK and PI3K/mTOR1,2 inhibition is synergistic. Expression analysis confirms that combined MEK and PI3K/mTOR1,2 inhibition predominantly influences genes in the rat sarcoma (RAS) pathway and growth factor receptor pathways, which signal through MEK/ERK and PI3K/mTOR, respectively. Our results suggest that combined targeting of the MEK/ERK and PI3K/mTOR pathways has antitumor activity and might serve as a therapeutic option in the treatment of NRAS mutant melanoma, for which there are currently no effective therapies.


Journal of Clinical Investigation | 2016

Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma

Adil Daud; Kimberly Loo; Mariela L. Pauli; Robert Sanchez-Rodriguez; Priscila Munoz Sandoval; Keyon Taravati; Katy K. Tsai; Adi Nosrati; Lorenzo Nardo; Michael Alvarado; Alain Patrick Algazi; Miguel Hernandez Pampaloni; Iryna Lobach; Jimmy Hwang; Robert H. Pierce; Iris K. Gratz; Matthew F. Krummel; Michael D. Rosenblum

BACKGROUND Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options. METHODS We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype. RESULTS Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte-associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti-PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs. CONCLUSIONS Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti-PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition. FUNDING This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.


British Journal of Cancer | 2009

Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker

Pamela N. Munster; Douglas C. Marchion; S. Thomas; M. Egorin; Susan Minton; Gregory M. Springett; Ji-Hyun Lee; George R. Simon; Alberto Chiappori; Daniel M. Sullivan; Adil Daud

Background:Histone deacetylase inhibitors (HDACi) can sensitise cancer cells to topoisomerase inhibitors by increasing their access and binding to DNA.Methods:This phase I trial was designed to determine the toxicity profile, tolerability, and recommended phase II dose of escalating doses of the HDACi vorinostat, with weekly doxorubicin.Results:In total, 32 patients were treated; vorinostat was dosed at 400, 600, 800, or 1000 mg day−1 on days 1–3, followed by doxorubicin (20 mg m−2) on day 3 for 3 of 4 weeks. Maximal tolerated dose was determined to be 800 mg day−1 of vorinostat. Dose-limiting toxicities were grade 3 nausea/vomiting (two out of six) and fatigue (one out of six) at 1000 mg day−1. Non-dose-limiting grade 3/4 toxicities included haematological toxicity and venous thromboembolism. Antitumor activity in 24 evaluable patients included two partial responses (breast and prostate cancer). Two patients with melanoma had stable disease for ⩾8 months. Histone hyperacetylation changes in peripheral blood mononuclear and tumour cells were comparable. Histone hyperacetylation seemed to correlate with pre-treatment HDAC2 expression.Conclusion:These findings suggest that vorinostat can be combined with weekly doxorubicin in this schedule at a dose of 800 mg day−1. The HDAC2 expression may be a marker predictive of HDAC inhibition. Antitumor activity of this regimen in breast cancer, prostate cancer, and melanoma seems interesting.

Collaboration


Dive into the Adil Daud's collaboration.

Top Co-Authors

Avatar

Omid Hamid

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antoni Ribas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rene Gonzalez

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katy K. Tsai

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge