Adil M. Allahverdiyev
Yıldız Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adil M. Allahverdiyev.
Expert Review of Anti-infective Therapy | 2011
Adil M. Allahverdiyev; Kateryna Volodymyrivna Kon; Emrah Sefik Abamor; Malahat Bagirova; Miriam Rafailovich
The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium–antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.
Experimental Parasitology | 2013
Adil M. Allahverdiyev; Emrah Sefik Abamor; Melahat Bagirova; Serap Yesilkir Baydar; Sezen Canim Ates; Figen Kaya; Cengiz Kaya; Miriam Rafailovich
Leishmaniasis is a public health problem which is caused by protozoon parasites belonging to Leishmania species. The disease threatens approximately 350 million people in 98 countries all over the world. Cutaneous Leishmaniasis (CL) and Visceral Leishmaniasis (VL) are the mostly commonly seen forms of the disease. Treatment of the disease has remained insufficient since current antileishmanial drugs have several disadvantages such as toxicity, costliness and drug-resistance. Therefore, there is an immediate need to search for new antileishmanial compounds. TiO2@Ag nanoparticles (TiAg-Nps) have been demonstrated as promising antimicrobial agents since they provide inhibition of several types of bacteria. The basic antimicrobial mechanism of TiAg-Nps is the generation of reactive oxygen species (ROS). Even though Leishmania parasites are sensitive to ROS, there is no study in literature indicating antileishmanial activities of TiAg-Nps. Herein, in this study, TiAg-Nps are shown to possess antileishmanial effects on Leishmania tropica and Leishmania infantum parasites by inhibiting their biological properties such as viability, metabolic activity, and survival within host cells both in the dark and under visible light. The results indicate that TiAg-Nps decreased viability values of L. tropica, and L. infantum promastigotes 3- and 10-fold, respectively, in the dark, while these rates diminished approximately 20-fold for each species in the presence of visible light, in contrast to control. On the other hand, non-visible light-exposed TiAg-Nps inhibited survival of amastigotes nearly 2- and 2.5-fold; while visible light-exposed TiAg-Nps inhibited 4- and 4.5-fold for L. tropica and L. infantum parasites, respectively. Consequently, it was determined that non-visible light-exposed TiAg-Nps were more effective against L. infantum parasites while visible light-exposed TiAg-Nps exhibited nearly the same antileishmanial effect against both species. Therefore, we think that a combination of TiAg-Nps and visible light can be further used for treatment of CL, while application of TiAg-Nps alone can be a promising alternative in VL treatment.
Journal of Biomedical Science | 2015
Serap Derman; Zeynep Mustafaeva; Emrah Sefik Abamor; Melahat Bagirova; Adil M. Allahverdiyev
BackgroundCanine parvovirus 2 (CPV-2) remains a significant worldwide canine pathogen and the most common cause of viral enteritis in dogs. The 1xa0L15 and 7xa0L15 peptides overlap each other with QPDGGQPAV residues (7-15 of VP2 capsid protein of CPV) is shown to produce high immune response. PLGA nanoparticles were demonstrated to have special properties such as; controlled antigen release, protection from degradation, elimination of booster-dose and enhancing the cellular uptake by antigen presenting cells. Nevertheless, there is no study available in literature, about developing vaccine based on PLGA nanoparticles with adjuvant properties against CPV.Thus, the aim of the present study was to synthesize and characterize high immunogenic W-1xa0L19 peptide (from the VP2 capsid protein of CPV) loaded PLGA nanoparticle and to evaluate their in vitro immunogenic activity.ResultsPLGA nanoparticles were produced with 5.26u2009±u20090.05xa0% loading capacity and high encapsulation efficiency with 81.2u2009±u20093.1xa0%. Additionally, it was evaluated that free NPs and W-1xa0L19 peptide encapsulated PLGA nanoparticles have Z-ave of 183.9u2009±u200912.1xa0nm, 221.7u2009±u200915.8xa0nm and polydispersity index of 0.107u2009±u20090.08, 0.135u2009±u20090.12 respectively. It was determined that peptide loaded PLGA nanoparticles were successfully phagocytized by macrophage cells and increased NO production at 2-folds (*Pu2009<u20090.05) in contrast to free peptide, and 3-folds (*Pu2009<u20090.01) in contrast to control.ConclusionIn conclusion, for the first time, W-1xa0L19 peptide loaded PLGA nanoparticles were successfully synthesized and immunogenic properties evaluated. Obtained results showed that PLGA nanoparticles enhanced the capacity of W-1xa0L19 peptide to induce nitric oxide production in vitro due to its adjuvant properties. Depend on the obtained results, these nanoparticles can be accepted as potential vaccine candidate against Canine Parvovirus. Studies targeting PLGA nanoparticles based delivery system must be maintained in near future in order to develop new and more effective nano-vaccine formulations.
Journal of Biomedical Science | 2013
Murat Topuzogullari; Rabia Cakir Koc; Sevil Dincer Isoglu; Melahat Bagirova; Zeynep Mustafaeva Akdeste; Serhat Elcicek; Olga Nehir Oztel; Serap Yesilkir Baydar; Sezen Canim Ates; Adil M. Allahverdiyev
Research on the conjugates of synthetic polyelectrolytes with antigenic molecules, such as proteins, peptides, or carbohydrates, is an attractive area due to their highly immunogenic character in comparison to classical adjuvants. For example, polyacrylic acid (PAA) is a weak polyelectrolyte and has been used in several biomedical applications such as immunological studies, drug delivery, and enzyme immobilization. However, to our knowledge, there are no studies that document immune-stimulant properties of PAA in Leishmania infection. Therefore, we aimed to develop a potential vaccine candidate against leishmaniasis by covalently conjugating PAA with an immunologically vital molecule of lipophosphoglycan (LPG) found in Leishmania parasites. In the study, LPG and PAA were conjugated by a multi-step procedure, and final products were analyzed with GPC and MALDI-TOF MS techniques. In cytotoxicity experiments, LPG-PAA conjugates did not indicate toxic effects on L929 and J774 murine macrophage cells. We assume that LPG-PAA conjugate can be a potential vaccine candidate, and will be immunologically characterized in further studies to prove its potential.
Acta Tropica | 2017
Emrah Sefik Abamor; Adil M. Allahverdiyev; Melahat Bagirova; Miriam Rafailovich
Currently, the treatment of leishmaniasis is increasingly insufficient as current antileishmanial drugs have many disadvantages such as toxic side effects, high cost, and growing drug resistance. In order to overcome these disadvantages, researchers have recently focused on combination therapy by using pentavalent antimonials in conjunction with other antileihmanial compounds. Our previous study found that TiO2@Ag nanoparticles (TiAgNps) demonstrated significant antileishmanial effects. However, a lethal dose of TiAgNps on L. topica promastigotes was found to be toxic for macrophage cells. Moreover, non-toxic concentrations of TiAgNps were ineffective in inhibiting L. topica promastigotes and amastigotes. Thus, we propose the use of TiAgNps in combination with other antileishmanial compounds like meglumine antimoniate (MA) at non-toxic concentrations, which may increase the efficacies of both agents and decrease their toxicities. Therefore, the aim of this study was to determine in vitro and in vivo antileishmanial efficacies of TiAgNps-MA combinations at non-toxic concentrations and develop a new approach for treatment that lowers the toxicities of pentavalent antimonials to minimal levels and enhances their effectiveness. In vitro screening was performed on L. topica promastigote and amastigote-macropage culture by using MTT assay to determine proliferation, perform infection index analysis, and to conduct a Griess reaction for nitric oxide production, while in vivo antileishmanial assays were applied on Balb/c mice with CL models. The results demonstrated that combinations including TiAgNps and MA at non-toxic concentrations were highly efficacious against both promastigotes and amastigotes, while MA application alone did not show any inhibitory effects. It was determined that combination applications decreased the proliferation of L. topica promastigotes 2- to 5-fold in contrast to use of MA alone, and was dependent on concentrations. Moreover, the use of combinations led to inhibition of L. topica amastigotes at rates ranging between 80% and 95%. Additionally, combinations were found to decrease metabolic activities of each form of the parasite at ranges between 7- to 20-fold, causing programmed-cell death and stimulation of macrophages for intensive production of nitric oxide, which is accepted as an important antileishmanial agent (p<0.05). Furthermore, Σ FIC analysis demonstrated that the tested combinations composed little additive, but mostly synergistic effects for inhibition of promastigotes and amastigotes. According to in vivo screening results, the combinations displayed high antileishmanial activities by successfully healing lesions and significantly reducing parasite burdens. Combined, these results show that TiAgNps-MA combinations were much more effective than use of MA alone at non-toxic concentrations and they possess high potential for development of new antileishmanial drugs to fight against leishmaniasis.
Acta Tropica | 2013
Sezen Canim Ates; Malahat Bagirova; Adil M. Allahverdiyev; Bekir Kocazeybek; Erdogan Kosan
In recent years, the role of donor blood has taken an important place in epidemiology of Leishmaniasis. According to the WHO, the numbers of patients considered as symptomatic are only 5-20% of individuals with asymptomatic leishmaniasis. In this study for detection of Leishmania infection in donor blood samples, 343 samples from the Capa Red Crescent Blood Center were obtained and primarily analyzed by microscopic and serological methods. Subsequently, the traditional culture (NNN), Immuno-chromatographic test (ICT) and Polymerase Chain Reaction (PCR) methods were applied to 21 samples which of them were found positive with at least one method. Buffy coat (BC) samples from 343 blood donors were analyzed: 15 (4.3%) were positive by a microculture method (MCM); and 4 (1.1%) by smear. The sera of these 343 samples included 9 (2.6%) determined positive by ELISA and 7 (2%) positive by IFAT. Thus, 21 of (6.1%) the 343 subjects studied by smear, MCM, IFAT and ELISA techniques were identified as positive for leishmaniasis at least one of the techniques and the sensitivity assessed. According to our data, the sensitivity of the methods are identified as MCM (71%), smear (19%), IFAT (33%), ELISA (42%), NNN (4%), PCR (14%) and ICT (4%). Thus, with this study for the first time, the sensitivity of a MCM was examined in blood donors by comparing MCM with the methods used in the diagnosis of leishmaniasis. As a result, MCM was found the most sensitive method for detection of Leishmania parasites in samples obtained from a blood bank. In addition, the presence of Leishmania parasites was detected in donor bloods in Istanbul, a non-endemic region of Turkey, and these results is a vital importance for the health of blood recipients.
Parasite Immunology | 2016
Melahat Bagirova; Adil M. Allahverdiyev; Emrah Sefik Abamor; Ikram Ullah; Gizem Cosar; Mehmet Aydogdu; Hilal Senturk; Bengu Ergenoglu
Leishmaniasis is one of the most serious vector‐borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease.
Experimental Parasitology | 2013
Serhat Elcicek; Malahat Bagirova; Adil M. Allahverdiyev
Polyacrylic acid (PAA) is one of the anionic synthetic polyelectrolytes and is used in various immunological and pharmaceutical applications. PAA has been used as adjuvant in veterinary vaccines, in particular. However, to our knowledge, there are no studies that document immunostimulant properties of PAA in Leishmania infection. The main aim of this study was to investigate the interaction of Leishmania parasites with PAA: the possible effects on the infectivity of Leishmania promastigotes; and, induction of nitric oxide (NO) production in macrophages in vitro. The cytotoxicity of PAA on both macrophages and Leishmania infantum promastigotes were determined by MTT assay. NO production in the macrophage culture supernatant was measured by the Griess method. A significant, dose-dependent and time-dependent decrease in the infection index was observed after PAA exposure. The value of this decrease was found to be between 93% and 100% for all concentration and time points. PAA (molecular weight (MW) 30, 100 kDa at 1mg/1h)-exposed parasites stimulate NO production significantly at 48 h post-infection (PI), when compared to the control. This study demonstrates that Leishmania parasites lost their virulence upon interaction with PAA, and this interaction induced NO production in infected macrophages. These results may have important implications in the development of anti-leishmanial vaccines and amelioration of immune response.
Experimental Parasitology | 2011
Adil M. Allahverdiyev; Rabia Cakir Koc; Sezen Canim Ates; Malahat Bagirova; Serhat Elcicek; Olga Nehir Oztel
Leishmania parasites can be exposed to effects of light in their vectors and hosts, at various periods. However, there is no information about the effects of light on Leishmania parasites. The aim of this study is to investigate the effects of light on various cell parameters of Leishmania tropica, in vitro. All experiments were conducted on L. tropica promastigotes and amastigote-macrophage cultures, using flow cytometric analysis, MTT and phenol-sulfuric acid assay, DAPI and Giemsa. The results showed that the morphology of parasites has changed; the cell cycle has been affected and this caused parasites to remain at G0/G1 phase. Furthermore the proliferation, infectivity, glucose consumption and mitochondrial dehydrogenase activities of parasites were decreased. Thus, for the first time, in this study, the effects of light on biological activities of Leishmania parasites were shown. These new information about parasites biology, would be very important to investigate the effects of light on the parasites in infected vectors and hosts.
Materials Science and Engineering: C | 2016
Ceyhun Köse; Ramazan Kaçar; Aslı Pınar Zorba; Melahat Bagirova; Adil M. Allahverdiyev
It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded samples viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material.