Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aditya Murthy is active.

Publication


Featured researches published by Aditya Murthy.


Neuron | 2001

Search Efficiency but Not Response Interference Affects Visual Selection in Frontal Eye Field

Takashi R. Sato; Aditya Murthy; Kirk G. Thompson; Jeffrey D. Schall

Two manipulations of a visual search task were used to test the hypothesis that the discrimination of a target from distractors by visually responsive neurons in the frontal eye field (FEF) marks the outcome and conclusion of visual processing instead of saccade preparation. First, search efficiency was reduced by increasing the similarity of the distractors to the target. Second, response interference was introduced by infrequently changing the location of the target in the array. Both manipulations increased reaction time, but only the change in search efficiency affected the time needed to select the target by visually responsive neurons. This result indicates that visually responsive neurons in FEF form an explicit representation of the location of the target in the image.


Vision Research | 2007

Dynamics of saccade target selection: Race model analysis of double step and search step saccade production in human and macaque

C.R. Camalier; A. Gotler; Aditya Murthy; Kirk G. Thompson; Gordon D. Logan; Thomas J. Palmeri; Jeffrey D. Schall

We investigated how saccade target selection by humans and macaque monkeys reacts to unexpected changes of the image. This was explored using double step and search step tasks in which a target, presented alone or as a singleton in a visual search array, steps to a different location on infrequent, random trials. We report that human and macaque monkey performance are qualitatively indistinguishable. Performance is stochastic with the probability of producing a compensated saccade to the final target location decreasing with the delay of the step. Compensated saccades to the final target location are produced with latencies relative to the step that are comparable to or less than the average latency of saccades on trials with no target step. Noncompensated errors to the initial target location are produced with latencies less than the average latency of saccades on trials with no target step. Noncompensated saccades to the initial target location are followed by corrective saccades to the final target location following an intersaccade interval that decreases with the interval between the target step and the initiation of the noncompensated saccade. We show that this pattern of results cannot be accounted for by a race between two stochastically independent processes producing the saccade to the initial target location and another process producing the saccade to the final target location. However, performance can be accounted for by a race between three stochastically independent processes--a GO process producing the saccade to the initial target location, a STOP process interrupting that GO process, and another GO process producing the saccade to the final target location. Furthermore, if the STOP process and second GO process start at the same time, then the model can account for the incidence and latency of mid-flight corrections and rapid corrective saccades. This model provides a computational account of saccade production when the image changes unexpectedly.


Vision Research | 2004

Programming of double-step saccade sequences: modulation by cognitive control.

Supriya Ray; Jeffrey D. Schall; Aditya Murthy

The capacity to detect and correct errors is thought to engage cognitive control. To probe the nature of such control in relation to eye movements, subjects performed a double-step task under different instructions: to FOLLOW the appearance of successive targets; or to cancel the initial saccade and REDIRECT gaze to the final target location. Saccade sequences occurred in the FOLLOW and REDIRECT conditions where they represented correct and corrective behaviour, respectively. We observed that corrective responses were faster than correct responses, and concurrent preparation of saccades was facilitated during error correction. These results are consistent with psychological theories that posit supervisory cognitive control over action during error correction.


The Journal of Neuroscience | 2012

Understanding how the brain changes its mind: microstimulation in the macaque frontal eye field reveals how saccade plans are changed.

Arjun Ramakrishnan; Ramakrishnan Sureshbabu; Aditya Murthy

Accumulator models that integrate incoming sensory information into motor plans provide a robust framework to understand decision making. However, their applicability to situations that demand a change of plan raises an interesting problem for the brain. This is because interruption of the current motor plan must occur by a competing motor plan, which is necessarily weaker in strength. To understand how changes of mind get expressed in behavior, we used a version of the double-step task called the redirect task, in which monkeys were trained to modify a saccade plan. We microstimulated the frontal eye fields during redirect behavior and systematically measured the deviation of the evoked saccade from the response field to causally track the changing saccade plan. Further, to identify the underlying mechanisms, eight different computational models of redirect behavior were assessed. It was observed that the model that included an independent, spatially specific inhibitory process, in addition to the two accumulators representing the preparatory processes of initial and final motor plans, best predicted the performance and the pattern of saccade deviation profile in the task. Such an inhibitory process suppressed the preparation of the initial motor plan, allowing the final motor plan to proceed unhindered. Thus, changes of mind are consistent with the notion of a spatially specific, inhibitory process that inhibits the current inappropriate plan, allowing expression of the new plan.


Visual Neuroscience | 1998

Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17

Aditya Murthy; Allen L. Humphrey; Alan B. Saul; J. C. Feidler

Previous studies of cat visual cortex have shown that the spatiotemporal (S-T) structure of simple cell receptive fields correlates with direction selectivity. However, great heterogeneity exists in the relationship and this has implications for models. Here we report a laminar basis for some of the heterogeneity. S-T structure and direction selectivity were measured in 101 cells using stationary counterphasing and drifting gratings, respectively. Two procedures were used to assess S-T structure and its relation to direction selectivity. In the first, the S-T orientations of receptive fields were quantified by fitting response temporal phase versus stimulus spatial phase data. In the second procedure, conventional linear predictions of direction selectivity were computed from the amplitudes and phases of responses to stationary gratings. Extracellular recording locations were reconstructed histologically. Among direction-selective cells, S-T orientation was greatest in layer 4B and it correlated well (r = 0.76) with direction selectivity. In layer 6, S-T orientation was uniformly low, overlapping little with layer 4B, and it was not correlated with directional tuning. Layer 4A was intermediate in S-T orientation and its relation (r = 0.46) to direction selectivity. The same laminar patterns were observed using conventional linear predictions. The patterns do not reflect laminar differences in direction selectivity since the layers were equivalent in directional tuning. We also evaluated a model of linear spatiotemporal summation followed by a static nonlinear amplification (exponent model) to account for direction selectivity. The values of the exponents were estimated from differences between linearly predicted and actual amplitude modulations to counterphasing gratings. Comparing these exponents with another exponent--that required to obtain perfect matches between linearly predicted and measured directional tuning--indicates that an exponent model largely accounts for direction selectivity in most cells in layer 4, particularly layer 4B, but not in layer 6. Dynamic nonlinearities seem essential for cells in layer 6. We suggest that these laminar differences may partly reflect the differential involvement of geniculocortical and intracortical mechanisms.


Network: Computation In Neural Systems | 1997

Hebbian learning and the development of direction selectivity: The role of geniculate response timings

J. C. Feidler; Alan B. Saul; Aditya Murthy; Allen L. Humphrey

Zero-sum Hebbian learning rules that reinforce well correlated inputs have been used by others to model the competitive self-organization of afferents from the lateral geniculate nucleus to produce orientation selectivity and ocular dominance columns. However, the application of these simple Hebbian rules to the development of direction selectivity (DS) is problematic because the best correlated inputs are those that are well correlated in both the preferred and nonpreferred directions of motion. Such afferents would combine to produce non-DS cortical units. Afferents that are in spatiotemporal quadrature would combine to produce DS cortical units, but are poorly correlated in the nonpreferred direction. In this paper, the development of DS is reduced to the problem of associating a pair of units in spatiotemporal quadrature in the face of competition from a third, non-quadrature unit. As expected, simple Hebbian learning rules perform poorly at associating the quadrature pair. However, two additional Heb...


Journal of Neurophysiology | 2010

Voluntary Control of Multisaccade Gaze Shifts During Movement Preparation and Execution

Aparajita Ramakrishnan; Snehal Chokhandre; Aditya Murthy

Although the nature of gaze control regulating single saccades is relatively well documented, how such control is implemented to regulate multisaccade gaze shifts is not known. We used highly eccentric targets to elicit multisaccade gaze shifts and tested the ability of subjects to control the saccade sequence by presenting a second target on random trials. Their response allowed us to test the nature of control at many levels: before, during, and between saccades. Although the saccade sequence could be inhibited before it began, we observed clear signs of truncation of the first saccade, which confirmed that it could be inhibited in midflight as well. Using a race model that explains the control of single saccades, we estimated that it took about 100 ms to inhibit a planned saccade but took about 150 ms to inhibit a saccade during its execution. Although the time taken to inhibit was different, the high subject-wise correlation suggests a unitary inhibitory control acting at different levels in the oculomotor system. We also frequently observed responses that consisted of hypometric initial saccades, followed by secondary saccades to the initial target. Given the estimates of the inhibitory process provided by the model that also took into account the variances of the processes as well, the secondary saccades (average latency approximately 215 ms) should have been inhibited. Failure to inhibit the secondary saccade suggests that the intersaccadic interval in a multisaccade response is a ballistic stage. Collectively, these data indicate that the oculomotor system can control a response until a very late stage in its execution. However, if the response consists of multiple movements then the preparation of the second movement becomes refractory to new visual input, either because it is part of a preprogrammed sequence or as a consequence of being a corrective response to a motor error.


Journal of Neurophysiology | 2008

Control of Predictive Error Correction During a Saccadic Double-Step Task

K. M. Sharika; Arjun Ramakrishnan; Aditya Murthy

We explored the nature of control during error correction using a modified saccadic double-step task in which subjects cancelled the initial saccade to the first target and redirected gaze to a second target. Failure to inhibit was associated with a quick corrective saccade, suggesting that errors and corrections may be planned concurrently. However, because saccade programming constitutes a visual and a motor stage of preparation, the extent to which parallel processing occurs in anticipation of the error is not known. To estimate the time course of error correction, a triple-step condition was introduced that displaced the second target during the error. In these trials, corrective saccades directed at the location of the target prior to the third step suggest motor preparation of the corrective saccade in parallel with the error. To estimate the time course of motor preparation of the corrective saccade, further, we used an accumulator model (LATER) to fit the reaction times to the triple-step stimuli; the best-fit data revealed that the onset of correction could occur even before the start of the error. The estimated start of motor correction was also observed to be delayed as target step delay decreased, suggesting a form of interference between concurrent motor programs. Taken together we interpret these results to indicate that predictive error correction may occur concurrently while the oculomotor system is trying to inhibit an unwanted movement and suggest how inhibitory control and error correction may interact to enable goal-directed behaviors.


Visual Neuroscience | 1999

Cell types and response timings in the medial interlaminar nucleus and C-layers of the cat lateral geniculate nucleus

Allen L. Humphrey; Aditya Murthy

Previous evidence concerning the physiological cell classes in the medial interlaminar nucleus (MIN) has been conflicting. We reexamined the MIN using standard functional tests to distinguish X-, Y- and W-cells. Discharge patterns to flashing spots also were used to identify some cells as lagged or nonlagged, as previously done for the geniculate A-layers. Also, each cells response timing (latency and absolute phase) was measured from discharges to a spot undergoing sinusoidal luminance modulation. Of 71 MIN cells, 48% were Y, 27% were W, 8% were X, and 17% were unclassifiable. Lagged and nonlagged discharge profiles were observed in each cell group, with 28% of all cells being lagged. Lagged cells displayed a response suppression and long latency to discharge following spot onset, and a slow decay in firing at spot offset that was often preceded by a transient discharge. These profiles were indistinguishable from those of lagged cells in the A-layers. MIN cells also were heterogeneous in response timing, displaying a range of latency and absolute phase values similar to that in the A-layers. We extended these analyses to 27 cells in the geniculate C-layers. In layer C, 35% of cells were Y, 10% were X, 25% were W, and 30% were unclassifiable. About 11% had lagged profiles, and were X-cells or unclassifiable cells. Layers C1 and C2 contained only W-cells and no lagged profiles. The range of timings in the C-layers was somewhat narrower than in the MIN. Overall, these results show that the MIN contains a greater variety of functional cell classes than heretofore appreciated. Further, it appears that mechanisms which create different timing delays in the A-layers also exist in the MIN and layer C. These timings may contribute to direction selectivity in extrastriate cortex.


Journal of Neurophysiology | 2015

Eye-hand coordination during a double-step task: evidence for a common stochastic accumulator

Atul Gopal; Aditya Murthy

Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (∼90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.

Collaboration


Dive into the Aditya Murthy's collaboration.

Top Co-Authors

Avatar

Neha Bhutani

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

Supriya Ray

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Ramakrishnan

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

Kirk G. Thompson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Atul Gopal

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

K. M. Sharika

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ausaf A. Farooqui

National Brain Research Centre

View shared research outputs
Top Co-Authors

Avatar

Madhuri Behari

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ramakrishnan Sureshbabu

National Brain Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge