Aditya Savara
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aditya Savara.
Chemcatchem | 2014
Aditya Savara; Carine E. Chan-Thaw; Ilenia Rossetti; Alberto Villa; Laura Prati
Experiments were conducted on the liquid‐phase oxidation of benzyl alcohol over Pd nanoparticles, with the aim of determining the operative chemical reaction. Experiments were conducted in a batch reactor with para‐xylene as the solvent and continuous gas purging of the headspace. The following experimental parameters were varied: the initial benzyl alcohol concentration, the oxygen partial pressure in the headspace, and the reactor temperature. From trends in the concentration profiles and integrated production of each product, it was determined that there are two primary reaction paths: A) an alkoxy pathway leading to toluene, benzaldehyde, and benzyl ether, and B) a carbonyloxyl pathway (“neutral carboxylate”) leading to benzoic acid, benzene, and benzyl benzoate. From the mechanism elucidated, it is clear that the coverages of atomic hydrogen, atomic oxygen, and surface hydroxyls must be accounted for to achieve a complete description of the quantitative kinetics.
Annual Review of Physical Chemistry | 2014
Aditya Savara; Eric Weitz
Infrared spectroscopy has a long history as a tool for the identification of chemical compounds. More recently, various implementations of infrared spectroscopy have been successfully applied to studies of heterogeneous catalytic reactions with the objective of identifying intermediates and determining catalytic reaction mechanisms. We discuss selective applications of these techniques with a focus on several heterogeneous catalytic reactions, including hydrogenation, deNOx, water-gas shift, and reverse-water-gas shift. The utility of using isotopic substitutions and other techniques in tandem with infrared spectroscopy is discussed. We comment on the modes of implementation and the advantages and disadvantages of the various infrared techniques. We also note future trends and the role of computational calculations in such studies. The infrared techniques considered are transmission Fourier transform infrared spectroscopy, infrared reflection-absorption spectroscopy, polarization-modulation infrared reflection-absorption spectroscopy, sum-frequency generation, diffuse reflectance infrared Fourier transform spectroscopy, attenuated total reflectance, infrared emission spectroscopy, photoacoustic infrared spectroscopy, and surface-enhanced infrared absorption spectroscopy.
Chemcatchem | 2016
Aditya Savara; Ilenia Rossetti; Carine E. Chan-Thaw; Laura Prati; Alberto Villa
Six products are formed from benzyl alcohol oxidation over Pd nanoparticles using O2 as the oxidant: benzaldehyde, toluene, benzyl ether, benzene, benzoic acid, and benzyl benzoate. Three experimental parameters were varied here: alcohol concentration, oxygen concentration, and temperature. Microkinetic modeling using a mechanism published recently with surface intermediates was able to produce all 18 trends observed experimentally with mostly quantitative agreement. Approximate analytical equations derived from the microkinetic model for isothermal conditions reproduced the isothermal trends and provided insight. The most important activation energies are Ea2=57.9 kJ mol−1, Ea5=129 kJ mol−1, and Ea6=175 kJ mol−1, which correspond to alcohol dissociation, alkyl hydrogenation, and the reaction of alkyl species with alkoxy species. Upper limits for other activation energies were identified. The concepts of a sticking coefficient and steric factor in solution were applied.
Chemcatchem | 2017
Aditya Savara; Carine E. Chan-Thaw; Jonathan E. Sutton; Di Wang; Laura Prati; Alberto Villa
The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. The calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent with the microkinetic modeling.
Computer Physics Communications | 2017
Thomas Danielson; Jonathan E. Sutton; Celine Hin; Aditya Savara
Abstract Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps/CPU time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events—allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations. As shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.
Journal of Chemical Physics | 2016
Thomas Danielson; Celine Hin; Aditya Savara
Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10−26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.
Journal of Chemical Physics | 2014
Filippos Lazaridis; Aditya Savara; Panos Argyrakis
We study the effect of the variation of reaction efficiency in binary reactions. We use the well-known A + B → 0 model, which has been extensively studied in the past. We perform simulations on this model where we vary the efficiency of reaction, i.e., when two particles meet they do not instantly react, as has been assumed in previous studies, but they react with a probability γ, where γ is in the range 0 < γ < 1. Our results show that at small γ values the system is reaction limited, but as γ increases it crosses over to a diffusion limited behavior. At early times, for small γ values, the particle density falls slower than for larger γ values. This fall-off goes over a crossover point, around the value of γ = 0.50 for high initial densities. Under a variety of conditions simulated, we find that the crossover point was dependent on the initial concentration but not on the lattice size. For intermediate and long times simulations, all γ values (in the depleted reciprocal density versus time plot) converge to the same behavior. These theoretical results are useful in models of epidemic reactions and epidemic spreading, where a contagion from one neighbor to the next is not always successful but proceeds with a certain probability, an analogous effect with the reaction probability examined in the current work.
Computer Physics Communications | 2018
Chris Nellis; Thomas Danielson; Aditya Savara; Celine Hin
Abstract A window-based steady-state detection algorithm has been developed for application to kinetic Monte Carlo simulation data. The algorithm, termed F-t-Pj-RG sequentially applies an F-test, a t-test, and a projection test on adjacent windows of the data while rolling (or shifting) and growing the windows when any of the tests fail. In aggregate, the algorithm is able to (a) automatically reject the warm-up period as not being at steady-state, as well as (b) determine an appropriate window size for converged statistics when sampling the data, which is necessary for detection of steady-state, and (c) detect steady-state within a particular tolerance. The last step, the projection test, is actually an oscillating-slope projection test, and is performed on j sequential data windows (i.e., more than two adjacent windows). It requires more than simply being within the user defined tolerance: the oscillating-slope projection test includes a condition that the slope must oscillate around zero when ≥ 2, which is an additional indication of steady-state. When all three tests are passed, the F-t-Pj test is passed, indicating that the prerequisites of steady-state detection have been met and also that conditions consistent with the definition of steady-state have been realized. This algorithm is applied to a variety of data sets that correspond to the diverse type of data trends that can be produced by kinetic Monte Carlo simulations. The algorithm is shown to be robust in its ability to handle differing functional forms, and is able to detect steady-state with low computational cost. The low computational cost of this method and its robustness towards varied data trends make it suitable for on-the-fly use in kinetic Monte Carlo simulations.
Applied Catalysis B-environmental | 2008
Aditya Savara; Mei Jun Li; Wolfgang M.H. Sachtler; Eric Weitz
Catalysis Today | 2008
Younghoon Yeom; Meijun Li; Aditya Savara; Wolfgang M.H. Sachtler; Eric Weitz