Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adler R. Dillman is active.

Publication


Featured researches published by Adler R. Dillman.


PLOS Pathogens | 2012

An Entomopathogenic Nematode by Any Other Name

Adler R. Dillman; John M. Chaston; Byron J. Adams; Todd A. Ciche; Heidi Goodrich-Blair; S. Patricia Stock; Paul W. Sternberg

Among the diversity of insect-parasitic nematodes, entomopathogenic nematodes (EPNs) are distinct, cooperating with insect-pathogenic bacteria to kill insect hosts. EPNs have adapted specific mechanisms to associate with and transmit bacteria to insect hosts. New discoveries have expanded this guild of nematodes and refine our understanding of the nature and evolution of insect–nematode associations. Here, we clarify the meaning of “entomopathogenic” in nematology and argue that EPNs must rapidly kill their hosts with the aid of bacterial partners and must pass on the associated bacteria to future generations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Olfaction shapes host–parasite interactions in parasitic nematodes

Adler R. Dillman; Manon L. Guillermin; Joon Ha Lee; Brian Kim; Paul W. Sternberg; Elissa A. Hallem

Many parasitic nematodes actively seek out hosts in which to complete their lifecycles. Olfaction is thought to play an important role in the host-seeking process, with parasites following a chemical trail toward host-associated odors. However, little is known about the olfactory cues that attract parasitic nematodes to hosts or the behavioral responses these cues elicit. Moreover, what little is known focuses on easily obtainable laboratory hosts rather than on natural or other ecologically relevant hosts. Here we investigate the olfactory responses of six diverse species of entomopathogenic nematodes (EPNs) to seven ecologically relevant potential invertebrate hosts, including one known natural host and other potential hosts collected from the environment. We show that EPNs respond differentially to the odor blends emitted by live potential hosts as well as to individual host-derived odorants. In addition, we show that EPNs use the universal host cue CO2 as well as host-specific odorants for host location, but the relative importance of CO2 versus host-specific odorants varies for different parasite–host combinations and for different host-seeking behaviors. We also identified host-derived odorants by gas chromatography-mass spectrometry and found that many of these odorants stimulate host-seeking behaviors in a species-specific manner. Taken together, our results demonstrate that parasitic nematodes have evolved specialized olfactory systems that likely contribute to appropriate host selection.


The Biological Bulletin | 2012

Nematode-Bacterium Symbioses - Cooperation and Conflict Revealed in the 'Omics' Age

Kristen E. Murfin; Adler R. Dillman; Jeremy M. Foster; Silvia Bulgheresi; Barton E. Slatko; Paul W. Sternberg; Heidi Goodrich-Blair

Nematodes are ubiquitous organisms that have a significant global impact on ecosystems, economies, agriculture, and human health. The applied importance of nematodes and the experimental tractability of many species have promoted their use as models in various research areas, including developmental biology, evolutionary biology, ecology, and animal-bacterium interactions. Nematodes are particularly well suited for the investigation of host associations with bacteria because all nematodes have interacted with bacteria during their evolutionary history and engage in a variety of association types. Interactions between nematodes and bacteria can be positive (mutualistic) or negative (pathogenic/parasitic) and may be transient or stably maintained (symbiotic). Furthermore, since many mechanistic aspects of nematode-bacterium interactions are conserved, their study can provide broader insights into other types of associations, including those relevant to human diseases. Recently, genome-scale studies have been applied to diverse nematode-bacterial interactions and have helped reveal mechanisms of communication and exchange between the associated partners. In addition to providing specific information about the system under investigation, these studies also have helped inform our understanding of genome evolution, mutualism, and innate immunity. In this review we discuss the importance and diversity of nematodes, “omics”’ studies in nematode-bacterial systems, and the wider implications of the findings.


Genetics | 2013

The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle

Jagan Srinivasan; Adler R. Dillman; Marissa Macchietto; Liisa Heikkinen; Merja Lakso; Kelley M. Fracchia; Igor Antoshechkin; Ali Mortazavi; Garry Wong; Paul W. Sternberg

Nematodes compose an abundant and diverse invertebrate phylum with members inhabiting nearly every ecological niche. Panagrellus redivivus (the “microworm”) is a free-living nematode frequently used to understand the evolution of developmental and behavioral processes given its phylogenetic distance to Caenorhabditis elegans. Here we report the de novo sequencing of the genome, transcriptome, and small RNAs of P. redivivus. Using a combination of automated gene finders and RNA-seq data, we predict 24,249 genes and 32,676 transcripts. Small RNA analysis revealed 248 microRNA (miRNA) hairpins, of which 63 had orthologs in other species. Fourteen miRNA clusters containing 42 miRNA precursors were found. The RNA interference, dauer development, and programmed cell death pathways are largely conserved. Analysis of protein family domain abundance revealed that P. redivivus has experienced a striking expansion of BTB domain-containing proteins and an unprecedented expansion of the cullin scaffold family of proteins involved in multi-subunit ubiquitin ligases, suggesting proteolytic plasticity and/or tighter regulation of protein turnover. The eukaryotic release factor protein family has also been dramatically expanded and suggests an ongoing evolutionary arms race with viruses and transposons. The P. redivivus genome provides a resource to advance our understanding of nematode evolution and biology and to further elucidate the genomic architecture leading to free-living lineages, taking advantage of the many fascinating features of this worm revealed by comparative studies.


Genome Biology | 2015

Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks

Adler R. Dillman; Marissa Macchietto; Camille F. Porter; Alicia K. Rogers; Brian C. Williams; Igor Antoshechkin; Ming Min Lee; Z. Goodwin; Xiaojun Lu; Edwin E. Lewis; Heidi Goodrich-Blair; S. Patricia Stock; Byron J. Adams; Paul W. Sternberg; Ali Mortazavi

BackgroundParasitism is a major ecological niche for a variety of nematodes. Multiple nematode lineages have specialized as pathogens, including deadly parasites of insects that are used in biological control. We have sequenced and analyzed the draft genomes and transcriptomes of the entomopathogenic nematode Steinernema carpocapsae and four congeners (S. scapterisci, S. monticolum, S. feltiae, and S. glaseri).ResultsWe used these genomes to establish phylogenetic relationships, explore gene conservation across species, and identify genes uniquely expanded in insect parasites. Protein domain analysis in Steinernema revealed a striking expansion of numerous putative parasitism genes, including certain protease and protease inhibitor families, as well as fatty acid- and retinol-binding proteins. Stage-specific gene expression of some of these expanded families further supports the notion that they are involved in insect parasitism by Steinernema. We show that sets of novel conserved non-coding regulatory motifs are associated with orthologous genes in Steinernema and Caenorhabditis.ConclusionsWe have identified a set of expanded gene families that are likely to be involved in parasitism. We have also identified a set of non-coding motifs associated with groups of orthologous genes in Steinernema and Caenorhabditis involved in neurogenesis and embryonic development that are likely part of conserved protein–DNA relationships shared between these two genera.


G3: Genes, Genomes, Genetics | 2013

Origin and Evolution of Dishevelled

Adler R. Dillman; Paul J. Minor; Paul W. Sternberg

Dishevelled (Dsh or Dvl) is an important signaling protein, playing a key role in Wnt signaling and relaying cellular information for several developmental pathways. Dsh is highly conserved among metazoans and has expanded into a multigene family in most bilaterian lineages, including vertebrates, planarians, and nematodes. These orthologs, where explored, are known to have considerable overlap in function, but evidence for functional specialization continues to mount. We performed a comparative analysis of Dsh across animals to explore protein architecture and identify conserved and divergent features that could provide insight into functional specialization with an emphasis on invertebrates, especially nematodes. We find evidence of dynamic evolution of Dsh, particularly among nematodes, with taxa varying in ortholog number from one to three. We identify a new domain specific to some nematode lineages and find an unexpected nuclear localization signal conserved in many Dsh orthologs. Our findings raise questions of protein evolution in general and provide clues as to how animals have dealt with the complex intricacies of having a protein, such as Dsh, act as a central messenger hub connected to many different and vitally important pathways. We discuss our findings in the context of functional specialization and bring many testable hypotheses to light.


BMC Biology | 2016

Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes

Joon Ha Lee; Adler R. Dillman; Elissa A. Hallem

BackgroundEntomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation.ResultsWe find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes.ConclusionsIJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.


Molecular Microbiology | 2014

NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes.

Jeff L. Veesenmeyer; Aaron W. Andersen; Xiaojun Lu; Elizabeth A. Hussa; Kristen E. Murfin; John M. Chaston; Adler R. Dillman; Karen M. Wassarman; Paul W. Sternberg; Heidi Goodrich-Blair

The bacterium Xenorhabdus nematophila is a mutualist of entomopathogenic Steinernema carpocapsae nematodes and facilitates infection of insect hosts. X. nematophila colonizes the intestine of S. carpocapsae which carries it between insects. In the X. nematophila colonization‐defective mutant nilD6::Tn5, the transposon is inserted in a region lacking obvious coding potential. We demonstrate that the transposon disrupts expression of a single CRISPR RNA, NilD RNA. A variant NilD RNA also is expressed by X. nematophila strains from S. anatoliense and S. websteri nematodes. Only nilD from the S. carpocapsae strain of X. nematophila rescued the colonization defect of the nilD6::Tn5 mutant, and this mutant was defective in colonizing all three nematode host species. NilD expression depends on the presence of the associated Cas6e but not Cas3, components of the Type I‐E CRISPR‐associated machinery. While cas6e deletion in the complemented strain abolished nematode colonization, its disruption in the wild‐type parent did not. Likewise, nilD deletion in the parental strain did not impact colonization of the nematode, revealing that the requirement for NilD is evident only in certain genetic backgrounds. Our data demonstrate that NilD RNA is conditionally necessary for mutualistic host colonization and suggest that it functions to regulate endogenous gene expression.


PLOS Pathogens | 2017

Activated entomopathogenic nematode infective juveniles release lethal venom proteins

Dihong Lu; Marissa Macchietto; Dennis Chang; Mirayana M. Barros; James G. Baldwin; Ali Mortazavi; Adler R. Dillman

Entomopathogenic nematodes (EPNs) are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs) of Steinernema carpocapsae (a well-studied EPN species) release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products.


Cell Reports | 2015

Defining Resistance and Tolerance to Cancer.

Adler R. Dillman; David S. Schneider

There are two ways to maintain fitness in the face of infection: resistance is a hosts ability to reduce microbe load and disease tolerance is the ability of the host to endure the negative health effects of infection. Resistance and disease tolerance should be applicable to any insult to the host and have been explored in depth with regards to infection but have not been examined in the context of cancer. Here, we establish a framework for measuring and separating resistance and disease tolerance to cancer in Drosophila melanogaster. We plot a disease tolerance curve to cancer in wild-type flies and then compare this to natural variants, identifying a line with reduced cancer resistance. Quantitation of these two traits opens an additional dimension for analysis of cancer biology.

Collaboration


Dive into the Adler R. Dillman's collaboration.

Top Co-Authors

Avatar

Paul W. Sternberg

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Dihong Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Ali Mortazavi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron J. Adams

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Heidi Goodrich-Blair

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meera G. Nair

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge