Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adly M.M. Abd-Alla is active.

Publication


Featured researches published by Adly M.M. Abd-Alla.


BMC Microbiology | 2012

Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina)

Vangelis Doudoumis; George Tsiamis; Florence N. Wamwiri; Corey L. Brelsfoard; Uzma Alam; Emre Aksoy; Stelios Dalaperas; Adly M.M. Abd-Alla; Johnson O. Ouma; Peter Takac; Serap Aksoy; Kostas Bourtzis

BackgroundWolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals.ResultsIn the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome.ConclusionsWolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.


Virology Journal | 2015

Complete genome sequencing and phylogenetic analysis of dengue type 1 virus isolated from Jeddah, Saudi Arabia

Esam I. Azhar; Anwar M. Hashem; Sherif El-Kafrawy; Said Abol-Ela; Adly M.M. Abd-Alla; Sayed Sartaj Sohrab; Suha A. Farraj; Norah A. Othman; Huda G Ben-Helaby; Ahmed Mohamed Ashshi; Tariq A. Madani; Ghazi Jamjoom

BackgroundDengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia.FindingsHere, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004–2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region.ConclusionsThese data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.


Journal of Virology | 2008

Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus reveals a novel, large, double-stranded circular DNA virus

Adly M.M. Abd-Alla; François Cousserans; Andrew G. Parker; Johannes A. Jehle; Nicolas J Parker; Just M. Vlak; Alan S. Robinson; Max Bergoin

ABSTRACT Several species of tsetse flies can be infected by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). Infection causes salivary gland hypertrophy and also significantly reduces the fecundity of the infected flies. To better understand the molecular basis underlying the pathogenesis of this unusual virus, we sequenced and analyzed its genome. The GpSGHV genome is a double-stranded circular DNA molecule of 190,032 bp containing 160 nonoverlapping open reading frames (ORFs), which are distributed equally on both strands with a gene density of one per 1.2 kb. It has a high A+T content of 72%. About 3% of the GpSGHV genome is composed of 15 sequence repeats, distributed throughout the genome. Although sharing the same morphological features (enveloped rod-shaped nucleocapsid) as baculoviruses, nudiviruses, and nimaviruses, analysis of its genome revealed that GpSGHV differs significantly from these viruses at the level of its genes. Sequence comparisons indicated that only 23% of GpSGHV genes displayed moderate homologies to genes from other invertebrate viruses, principally baculoviruses and entomopoxviruses. Most strikingly, the GpSGHV genome encodes homologues to the four baculoviral per os infectivity factors (p74 [pif-0], pif-1, pif-2, and pif-3). The DNA polymerase encoded by GpSGHV is of type B and appears to be phylogenetically distant from all DNA polymerases encoded by large double-stranded DNA viruses. The majority of the remaining ORFs could not be assigned by sequence comparison. Furthermore, no homologues to DNA-dependent RNA polymerase subunits were detected. Taken together, these data indicate that GpSGHV is the prototype member of a novel group of insect viruses.


Journal of General Virology | 2009

Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade.

Alejandra Garcia-Maruniak; Adly M.M. Abd-Alla; Tamer Z. Salem; Andrew G. Parker; Verena-Ulrike Lietze; M.M. van Oers; James E. Maruniak; Woojin Kim; John P. Burand; François Cousserans; A.S. Robinson; Just M. Vlak; Max Bergoin; Drion G. Boucias

Glossina pallidipes and Musca domestica salivary gland hypertrophy viruses (GpSGHV and MdSGHV) replicate in the nucleus of salivary gland cells causing distinct tissue hypertrophy and reduction of host fertility. They share general characteristics with the non-occluded insect nudiviruses, such as being insect-pathogenic, having enveloped, rod-shaped virions, and large circular double-stranded DNA genomes. MdSGHV measures 65x550 nm and contains a 124 279 bp genome (approximately 44 mol% G+C content) that codes for 108 putative open reading frames (ORFs). GpSGHV, measuring 50x1000 nm, contains a 190 032 bp genome (28 mol% G+C content) with 160 putative ORFs. Comparative genomic analysis demonstrates that 37 MdSGHV ORFs have homology to 42 GpSGHV ORFs, as some MdSGHV ORFs have homology to two different GpSGHV ORFs. Nine genes with known functions (dnapol, ts, pif-1, pif-2, pif-3, mmp, p74, odv-e66 and helicase-2), a homologue of the conserved baculovirus gene Ac81 and at least 13 virion proteins are present in both SGHVs. The amino acid identity ranged from 19 to 39 % among ORFs. An (A/T/G)TAAG motif, similar to the baculovirus late promoter motif, was enriched 100 bp upstream of the ORF transcription initiation sites of both viruses. Six and seven putative microRNA sequences were found in MdSGHV and GpSGHV genomes, respectively. There was genome. Collinearity between the two SGHVs, but not between the SGHVs and the nudiviruses. Phylogenetic analysis of conserved genes clustered both SGHVs in a single clade separated from the nudiviruses and baculoviruses. Although MdSGHV and GpSGHV are different viruses, their pathology, host range and genome composition indicate that they are related.


Virus Research | 2010

Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae).

Adly M.M. Abd-Alla; Henry M. Kariithi; Andrew G. Parker; Alan S. Robinson; Musie Kiflom; Max Bergoin; Marc J.B. Vreysen

Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. To better understand the impact of this virus in a laboratory colony of G. pallidipes, where the majority of flies are infected but asymptomatic, and to follow the development of SGH in the offspring of symptomatic infected flies, we examined the progeny of tsetse flies reared under different conditions. The results show that the progeny of asymptomatic parents did not develop SGH, while the progeny of symptomatic female flies mated with asymptomatic males developed a high rate of SGH (65% in male and 100% in females) and these flies were sterile. Stress in the form of high fly density in holding cages (180 flies/cage) and high temperature (30 degrees C) in the holding room did not affect the prevalence of the SGH. The virus is excreted in the saliva and there is a strong correlation between the infection status (negative, slight or strong by PCR) and the numbers of virus particles released into the blood on which the flies were fed. On average, around 10(2) and 10(7) virus particles were found in the blood after feeding asymptomatic or symptomatic infected flies respectively. Feeding the flies on new blood at every feed for three generations caused a significant reduction in the virus copy number in these flies when compared with the virus copy number in flies fed under the normal feeding regime. The results of these studies allowed the initiation of colony management protocols that aim to minimize the risk of horizontal transmission and to enable the establishment of colonies with a low virus prevalence or possibly even those that are virus free.


PLOS Neglected Tropical Diseases | 2011

Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control?

Adly M.M. Abd-Alla; Andrew G. Parker; Marc J.B. Vreysen; Max Bergoin

Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.


Annual Review of Entomology | 2011

Salivary Gland Hypertrophy Viruses: A Novel Group of Insect Pathogenic Viruses

Verena-Ulrike Lietze; Adly M.M. Abd-Alla; Marc J.B. Vreysen; Christopher J. Geden; Drion G. Boucias

Salivary gland hypertrophy viruses (SGHVs) are a unique, unclassified group of entomopathogenic, double-stranded DNA viruses that have been reported from three genera of Diptera. These viruses replicate in nuclei of salivary gland cells in adult flies, inducing gland enlargement with little obvious external disease symptoms. Viral infection inhibits reproduction by suppressing vitellogenesis, causing testicular aberrations, and/or disrupting mating behavior. Historical and present research findings support a recent proposal of a new virus family, the Hytrosaviridae. This review describes the discovery and prevalence of different SGHVs, summarizes their biochemical characterization and taxonomy, compares morphological and histopathological properties, and details transmission routes and the influence of infection on host biology and reproduction. In addition, the potential use of SGHVs as sterilizing agents for house fly control and the deleterious impact of SGHVs on colonized tsetse flies reared for sterile insect technique are discussed.


PLOS ONE | 2015

Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications

Antonios A. Augustinos; Georgios A. Kyritsis; Nikos T. Papadopoulos; Adly M.M. Abd-Alla; Carlos Cáceres; Kostas Bourtzis

The Mediterranean fruit fly (medfly), Ceratitis capitata, is a pest of worldwide substantial economic importance, as well as a Tephritidae model for sterile insect technique (SIT) applications. The latter is partially due to the development and utilization of genetic sexing strains (GSS) for this species, such as the Vienna 8 strain, which is currently used in mass rearing facilities worldwide. Improving the performance of such a strain both in mass rearing facilities and in the field could significantly enhance the efficacy of SIT and reduce operational costs. Recent studies have suggested that the manipulation of gut symbionts can have a significant positive effect on the overall fitness of insect strains. We used culture-based approaches to isolate and characterize gut-associated bacterial species of the Vienna 8 strain under mass rearing conditions. We also exploited one of the isolated bacterial species, Enterobacter sp., as dietary supplement (probiotic) to the larval diet, and we assessed its effects on fitness parameters under the standard operating procedures used in SIT operational programs. Probiotic application of Enterobacter sp. resulted in improvement of both pupal and adult productivity, as well as reduced rearing duration, particularly for males, without affecting pupal weight, sex ratio, male mating competitiveness, flight ability and longevity under starvation.


Journal of Invertebrate Pathology | 2013

Tsetse-Wolbachia symbiosis: Comes of age and has great potential for pest and disease control

Vangelis Doudoumis; Uzma Alam; Emre Aksoy; Adly M.M. Abd-Alla; George Tsiamis; Corey L. Brelsfoard; Serap Aksoy; Kostas Bourtzis

Tsetse flies (Diptera: Glossinidae) are the sole vectors of African trypanosomes, the causative agent of sleeping sickness in human and nagana in animals. Like most eukaryotic organisms, Glossina species have established symbiotic associations with bacteria. Three main symbiotic bacteria have been found in tsetse flies: Wigglesworthia glossinidia, an obligate symbiotic bacterium, the secondary endosymbiont Sodalis glossinidius and the reproductive symbiont Wolbachia pipientis. In the present review, we discuss recent studies on the detection and characterization of Wolbachia infections in Glossina species, the horizontal transfer of Wolbachia genes to tsetse chromosomes, the ability of this symbiont to induce cytoplasmic incompatibility in Glossina morsitans morsitans and also how new environment-friendly tools for disease control could be developed by harnessing Wolbachia symbiosis.


Journal of Invertebrate Pathology | 2013

Phylogeny and evolution of Hytrosaviridae

Johannes A. Jehle; Adly M.M. Abd-Alla; Yongjie Wang

The Hytrosaviridae comprises a family of dsDNA viruses with a circular genome of 120-190 kb p. They are exclusively associated with Diptera, such as the tsetse fly, the house fly and the Narcissus bulb fly. Hytrosaviruses cause a very unique pathology including hypertrophy of salivary glands as well as testicular and ovarian malformation. On the other hand these viruses share a significant number of gene homologues with other dsDNA viruses, esp. baculoviruses and nudiviruses. These gene homologues include twelve so-called baculovirus core genes involved in transcription, DNA replication and the infection process. Most strikingly, the Musca domestica salivary gland hypertrophy virus (MdSGHV) encodes a homologue of a polyhedrin/granulin gene of Alpha-, Beta-, Gammabaculoviruses. Hence, it is proposed that hytrosaviruses are phylogenetically related to baculoviruses but evolved in a very close association with their dipteran hosts.

Collaboration


Dive into the Adly M.M. Abd-Alla's collaboration.

Top Co-Authors

Avatar

Andrew G. Parker

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Max Bergoin

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Just M. Vlak

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Henry M. Kariithi

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Marc J.B. Vreysen

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H.M. Kariithi

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.M. Vlak

International Livestock Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kostas Bourtzis

International Atomic Energy Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge