Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adnan Y. Manzur is active.

Publication


Featured researches published by Adnan Y. Manzur.


Journal of Neurology, Neurosurgery, and Psychiatry | 2013

Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy

Valeria Ricotti; Deborah Ridout; Elaine Scott; R. Quinlivan; S. Robb; Adnan Y. Manzur; Francesco Muntoni

Objective To assess the current use of glucocorticoids (GCs) in Duchenne muscular dystrophy in the UK, and compare the benefits and the adverse events of daily versus intermittent prednisolone regimens. Design A prospective longitudinal observational study across 17 neuromuscular centres in the UK of 360 boys aged 3–15 years with confirmed Duchenne muscular dystrophy who were treated with daily or intermittent (10 days on/10 days off) prednisolone for a mean duration of treatment of 4 years. Results The median loss of ambulation was 12 years in intermittent and 14.5 years in daily treatment; the HR for intermittent treatment was 1.57 (95% CI 0.87 to 2.82). A fitted multilevel model comparing the intermittent and daily regiments for the NorthStar Ambulatory Assessment demonstrated a divergence after 7 years of age, with boys on an intermittent regimen declining faster (p<0.001). Moderate to severe side effects were more commonly reported and observed in the daily regimen, including Cushingoid features, adverse behavioural events and hypertension. Body mass index mean z score was higher in the daily regimen (1.99, 95% CI 1.79 to 2.19) than in the intermittent regimen (1.51, 95% CI 1.27 to 1.75). Height restriction was more severe in the daily regimen (mean z score −1.77, 95% CI −1.79 to −2.19) than in the intermittent regimen (mean z score −0.70, 95% CI −0.90 to −0.49). Conclusions Our study provides a framework for providing information to patients with Duchenne muscular dystrophy and their families when introducing GC therapy. The study also highlights the importance of collecting longitudinal natural history data on patients treated according to standardised protocols, and clearly identifies the benefits and the side-effect profile of two treatment regimens, which will help with informed choices and implementation of targeted surveillance.


Neurology | 2002

Autosomal recessive inheritance of RYR1 mutations in a congenital myopathy with cores

Heinz Jungbluth; Clemens R. Müller; B. Halliger-Keller; Martin Brockington; Susan C. Brown; L. Feng; Arijit Chattopadhyay; E. Mercuri; Adnan Y. Manzur; A. Ferreiro; Nigel G. Laing; Mark R. Davis; Helen Roper; Victor Dubowitz; Graeme M. Bydder; C. Sewry; Francesco Muntoni

Abstract—Central core disease (CCD) is a congenital myopathy due to dominant mutations in the skeletal muscle ryanodine receptor gene (RYR1). The authors report three patients from two consanguineous families with symptoms of a congenital myopathy, cores on muscle biopsy, and confirmed linkage to the RYR1 locus. Molecular genetic studies in one family identified a V4849I homozygous missense mutation in the RYR1 gene. This report suggests a congenital myopathy associated with recessive RYR1 mutations.


Annals of Neurology | 2008

Brain involvement in muscular dystrophies with defective dystroglycan glycosylation

Emma Clement; Eugenio Mercuri; Caroline Godfrey; Janine Smith; S. Robb; Maria Kinali; Volker Straub; Kate Bushby; Adnan Y. Manzur; Beril Talim; Frances Cowan; R. Quinlivan; Andrea Klein; Cheryl Longman; Robert McWilliam; Haluk Topaloglu; Rachael Mein; Stephen Abbs; Kathryn N. North; A. James Barkovich; Mary A. Rutherford; Francesco Muntoni

To assess the range and severity of brain involvement, as assessed by magnetic resonance imaging, in 27 patients with mutations in POMT1 (4), POMT2 (9), POMGnT1 (7), Fukutin (4), or LARGE (3), responsible for muscular dystrophies with abnormal glycosylation of dystroglycan (dystroglycanopathies).


American Journal of Human Genetics | 2013

Mutations in KLHL40 Are a Frequent Cause of Severe Autosomal-Recessive Nemaline Myopathy

Gianina Ravenscroft; Satoko Miyatake; Vilma-Lotta Lehtokari; Emily J. Todd; Pauliina Vornanen; Kyle S. Yau; Yukiko K. Hayashi; Noriko Miyake; Yoshinori Tsurusaki; Hiroshi Doi; Hirotomo Saitsu; Hitoshi Osaka; Sumimasa Yamashita; Takashi Ohya; Yuko Sakamoto; Eriko Koshimizu; Shintaro Imamura; Michiaki Yamashita; Kazuhiro Ogata; Masaaki Shiina; Robert J. Bryson-Richardson; Raquel Vaz; Ozge Ceyhan; Catherine A. Brownstein; Lindsay C. Swanson; Sophie Monnot; Norma B. Romero; Helge Amthor; Nina Kresoje; Padma Sivadorai

Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM.


Journal of Neurology, Neurosurgery, and Psychiatry | 2009

Diagnosis and new treatments in muscular dystrophies

Adnan Y. Manzur; Francesco Muntoni

Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD) and limb girdle muscular dystrophies (LGMD) represent a significant proportion of paediatric and adult neuromuscular neurology practice. The proactive symptom-based multidisciplinary team (MDT) management and access to non-invasive ventilation have enabled improved survival into adulthood. Nevertheless the severe disability imposed by conditions such as DMD poses a challenge for successful transition of care and management for paediatric and adult neurology teams. DMD is discussed in detail as a paradigm illustrating diagnosis, management and role for different pharmacological interventions to improve survival, but also challenges in adulthood care, and cutting-edge therapies. LGMDs are much rarer than DMD and BMD, and in addition there is a significant genetic and clinical heterogeneity, which leads to diagnostic difficulties. The clinical and laboratory diagnostic features of seven LGMD subtypes are summarised, and their allelic “non-limb girdle” phenotypes are tabulated to illustrate the theme of one gene causing multiple clinical phenotypes, with the aim of refining the clinician’s diagnostic approach. The lessons learnt from DMD MDT management to improve survival are broadly applicable to LGMDs with severe motor disability/multisystem complications.


Archives of Disease in Childhood | 2008

Update on the management of Duchenne muscular dystrophy

Adnan Y. Manzur; Maria Kinali; Francesco Muntoni

Duchenne muscular dystrophy (DMD) is familiar to paediatricians as the most common childhood muscular dystrophy and leads to severe disability and early death in the late teenage years if untreated. Improvements in general care, glucocorticoid corticosteroid treatment, non-invasive ventilatory support, and cardiomyopathy and scoliosis management have significantly changed the course of DMD in treated individuals, so that survival into adulthood is now a realistic possibility for most patients. This has important implications for the medical and social sectors involved in the transition to adult medical services and the provision of suitable employment and social care. Multidisciplinary team working for optimal management of DMD-specific multisystem complications is essential, and collaboration in disease specific national clinical networks is recommended. Several curative therapeutic strategies including cell and gene therapy are being pursued but are still at an experimental stage.


Annals of Neurology | 2010

Muscle Magnetic Resonance Imaging Involvement in Muscular Dystrophies with Rigidity of the Spine

Eugenio Mercuri; Emma Clements; Amaka C. Offiah; Anna Pichiecchio; Gessica Vasco; Flaviana Bianco; Angela Berardinelli; Adnan Y. Manzur; Marika Pane; Sonia Messina; Francesca Gualandi; Enzo Ricci; Mary A. Rutherford; Francesco Muntoni

The aim of the study was to evaluate whether the visual analysis of muscle magnetic resonance imaging scans can identify specific patterns of muscle involvement.


Journal of Neuroimmunology | 2008

Congenital myasthenic syndromes in childhood: diagnostic and management challenges.

Maria Kinali; David Beeson; Matthew Pitt; Heinz Jungbluth; A Aloysius; H Cockerill; T Davis; Jacqueline Palace; Adnan Y. Manzur; Cecilia Jimenez-Mallebrera; C. Sewry; Francesco Muntoni; S. Robb

The Congenital Myasthenic Syndromes (CMS), a group of heterogeneous genetic disorders of neuromuscular transmission, are often misdiagnosed as congenital muscular dystrophy (CMD) or myopathies and present particular management problems. We present our experience of 46 children with CMS, referred to us between 1992-2007 with provisional diagnoses of congenital myopathy (22/46), CMS or limb-girdle myasthenia (9/46), central hypotonia or neurometabolic disease (5/46), myasthenia gravis (4/46), limb-girdle or congenital muscular dystrophy (4/46) and SMA (2/46). Diagnosis was often considerably delayed (up to 18y4 m), despite the early symptoms in most cases. Diagnostic clues in the neonates were feeding difficulties (29/46), hypotonia with or without limb weakness (21/46), ptosis (19/46), respiratory insufficiency (12/46), contractures (4/46) and stridor (6/46). Twenty-five children had delayed motor milestones. Fatigability developed in 43 and a variable degree of ptosis was eventually present in 40. Over the period of the study, the mainstay of EMG diagnosis evolved from repetitive nerve stimulation to stimulation single fibre EMG. The patients were studied by several different operators. 66 EMGs were performed in 40 children, 29 showed a neuromuscular junction abnormality, 7 were myopathic, 2 had possible neurogenic changes and 28 were normal or inconclusive. A repetitive CMAP was detected in only one of seven children with a COLQ mutation and neither of the two children with Slow Channel Syndrome mutations. Mutations have been identified so far in 32/46 children: 10 RAPSN, 7 COLQ, 6 CHRNE, 7 DOK7, 1 CHRNA1 and 1 CHAT. 24 of 25 muscle biopsies showed myopathic changes with fibre size variation; 14 had type-1 fibre predominance. Three cases showed small type-1 fibres resembling fibre type disproportion, and four showed core-like lesions. No specific myopathic features were associated with any of the genes. Twenty children responded to Pyridostigmine treatment alone, 11 to Pyridostigmine with either 3, 4 DAP or Ephedrine and five to Ephedrine alone. Twenty one children required acute or chronic respiratory support, with tracheostomy in 4 and nocturnal or emergency non-invasive ventilation in 9. Eight children had gastrostomy. Another 11 were underweight for height indicative of failure to thrive and required dietetic input. A high index of clinical suspicion, repeat EMG by an experienced electromyographer and, if necessary, a therapeutic trial of Pyridostigmine facilitates the diagnosis of CMS with subsequent molecular genetic confirmation. This guides rational therapy and multidisciplinary management, which may be crucial for survival, particularly in pedigrees where previous deaths have occurred in infancy.


Brain | 2014

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

A. Reghan Foley; Manoj P. Menezes; Amelie Pandraud; Michael Gonzalez; Ahmad Al-Odaib; Alexander J. Abrams; Kumiko Sugano; Atsushi Yonezawa; Adnan Y. Manzur; Joshua Burns; Imelda Hughes; B. Gary McCullagh; Heinz Jungbluth; Ming Lim; Jean-Pierre Lin; André Mégarbané; J. Andoni Urtizberea; Ayaz H. Shah; Jayne Antony; Richard Webster; Alexander Broomfield; Joanne Ng; Ann Agnes Mathew; James J. O’Byrne; Eva Forman; M. Scoto; Manish Prasad; Katherine O’Brien; S. E. Olpin; Marcus Oppenheim

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Human Mutation | 2012

Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies.

Andrea Klein; Suzanne Lillis; Iulia Munteanu; M. Scoto; Haiyan Zhou; R. Quinlivan; Volker Straub; Adnan Y. Manzur; Helen Roper; Pierre-Yves Jeannet; Wojtek Rakowicz; David Hilton Jones; Uffe Birk Jensen; Elizabeth Wraige; Natalie Trump; Ulrike Schara; Hanns Lochmüller; Anna Sarkozy; Helen Kingston; Fiona Norwood; Maxwell S Damian; Janbernd Kirschner; Cheryl Longman; Mark Roberts; Michaela Auer-Grumbach; Imelda Hughes; Kate Bushby; C. Sewry; S. Robb; Stephen Abbs

Ryanodine receptor 1 (RYR1) mutations are a common cause of congenital myopathies associated with both dominant and recessive inheritance. Histopathological findings frequently feature central cores or multi‐minicores, more rarely, type 1 predominance/uniformity, fiber‐type disproportion, increased internal nucleation, and fatty and connective tissue. We describe 71 families, 35 associated with dominant RYR1 mutations and 36 with recessive inheritance. Five of the dominant mutations and 35 of the 55 recessive mutations have not been previously reported. Dominant mutations, typically missense, were frequently located in recognized mutational hotspot regions, while recessive mutations were distributed throughout the entire coding sequence. Recessive mutations included nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability. As a group, dominant mutations were associated with milder phenotypes; patients with recessive inheritance had earlier onset, more weakness, and functional limitations. Extraocular and bulbar muscle involvement was almost exclusively observed in the recessive group. In conclusion, our study reports a large number of novel RYR1 mutations and indicates that recessive variants are at least as frequent as the dominant ones. Assigning pathogenicity to novel mutations is often difficult, and interpretation of genetic results in the context of clinical, histological, and muscle magnetic resonance imaging findings is essential. Hum Mutat 33:981–988, 2012.

Collaboration


Dive into the Adnan Y. Manzur's collaboration.

Top Co-Authors

Avatar

Francesco Muntoni

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

S. Robb

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

C. Sewry

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Feng

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

M. Scoto

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Quinlivan

University College London

View shared research outputs
Top Co-Authors

Avatar

Eugenio Mercuri

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

P. Munot

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge