Adnen Mlayah
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Adnen Mlayah.
Advanced Materials | 2012
Zhi Wei Seh; Shuhua Liu; Michelle Low; Shuang-Yuan Zhang; Zhaolin Liu; Adnen Mlayah; Ming-Yong Han
The first use of non-centrosymmetric Janus Au-TiO(2) photocatalysts in efficient, plasmon-enhanced visible-light hydrogen generation is demonstrated. The intense localization of plasmonic near-fields close to the Au-TiO(2) interface, coupled with optical transitions involving localized electronic states in amorphous TiO(2) brings about enhanced optical absorption and the generation of electron-hole pairs for photocatalysis.
Journal of the American Chemical Society | 2011
Enyi Ye; Khin Yin Win; Hui Ru Tan; Ming Lin; Choon Peng Teng; Adnen Mlayah; Ming-Yong Han
We report a facile chemical synthesis of well-defined gold nanocrosses through anisotropic growth along both <110> and <001>, whereas gold nanorods grow only along either <110> or <001>. The multiple branching was achieved by breaking the face-centered-cubic lattice symmetry of gold through copper-induced formation of single or double twins, and the resulting gold nanocrosses exhibited pronounced near-IR absorption with a great extension to the mid-IR region. As studied by discrete dipole approximation (DDA) simulations, the entire nanocross gets excited even when one of the branches is exposed to incident light. The above properties make them useful as octopus antennas for capturing near-IR light for effective photothermal destruction of cells. The cell damage process was analyzed using the Arrhenius model, and its intrinsic thermodynamic characteristics were determined quantitatively. Besides effective photothermal treatment and two-photon luminescence imaging, the near- and mid-IR-absorbing gold nanocrosses may also find applications in IR sensing, thermal imaging, telecommunications, and the like.
ACS Nano | 2014
Sina Najmaei; Adnen Mlayah; Arnaud Arbouet; Christian Girard; Jean Léotin; Jun Lou
We report on the fabrication of monolayer MoS2-coated gold nanoantennas combining chemical vapor deposition, e-beam lithography surface patterning, and a soft lift-off/transfer technique. The optical properties of these hybrid plasmonic-excitonic nanostructures are investigated using spatially resolved photoluminescence spectroscopy. Off- and in-resonance plasmonic pumping of the MoS2 excitonic luminescence showed distinct behaviors. For plasmonically mediated pumping, we found a significant enhancement (∼65%) of the photoluminescence intensity, clear evidence that the optical properties of the MoS2 monolayer are strongly influenced by the nanoantenna surface plasmons. In addition, a systematic photoluminescence broadening and red-shift in nanoantenna locations is observed which is interpreted in terms of plasmonic enhanced optical absorption and subsequent heating of the MoS2 monolayers. Using a temperature calibration procedure based on photoluminescence spectral characteristics, we were able to estimate the local temperature changes. We found that the plasmonically induced MoS2 temperature increase is nearly four times larger than in the MoS2 reference temperatures. This study shines light on the plasmonic-excitonic interaction in these hybrid metal/semiconductor nanostructures and provides a unique approach for the engineering of optoelectronic devices based on the light-to-current conversion.
Scientific Reports | 2013
Michel Bosman; Enyi Ye; Shu Fen Tan; Christian A. Nijhuis; Joel K. W. Yang; Renaud Marty; Adnen Mlayah; Arnaud Arbouet; Christian Girard; Ming-Yong Han
Fabrication and synthesis of plasmonic structures is rapidly moving towards sub-nanometer accuracy in control over shape and inter-particle distance. This holds the promise for developing device components based on novel, non-classical electro-optical effects. Monochromated electron energy-loss spectroscopy (EELS) has in recent years demonstrated its value as a qualitative experimental technique in nano-optics and plasmonic due to its unprecedented spatial resolution. Here, we demonstrate that EELS can also be used quantitatively, to probe surface plasmon kinetics and damping in single nanostructures. Using this approach, we present from a large (>50) series of individual gold nanoparticles the plasmon Quality factors and the plasmon Dephasing times, as a function of energy/frequency. It is shown that the measured general trend applies to regular particle shapes (rods, spheres) as well as irregular shapes (dendritic, branched morphologies). The combination of direct sub-nanometer imaging with EELS-based plasmon damping analysis launches quantitative nanoplasmonics research into the sub-nanometer realm.
Physical Review Letters | 2011
Axel Bruchhausen; Raphael Gebs; Florian Hudert; Daniel Issenmann; Gregor Klatt; Albrecht Bartels; Olivier Schecker; Reimar Waitz; Artur Erbe; Elke Scheer; Jean-Roch Huntzinger; Adnen Mlayah; Thomas Dekorsy
We propose subharmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a subharmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the systems quality factor, and determine the amplitude of the mechanical motion with femtometer resolution.
Nano Letters | 2011
Renaud Marty; Arnaud Arbouet; Christian Girard; Adnen Mlayah; Vincent Paillard; Vivian Kaixin Lin; Siew Lang Teo; S. Tripathy
In this letter, the ultrafast vibrational dynamics of individual gold nanorings has been investigated by femtosecond transient absorption spectroscopy. Two acoustic vibration modes have been detected and identified. The influence of the mechanical coupling at the nanoparticle/substrate interface on the acoustic vibrations of the nano-objects is discussed. Moreover, by changing the environment of the nanoring, we provide a clear evidence of the impact of the surrounding medium on the damping of the acoustic vibrations. Such results are reported here for the first time on individual nanoparticles. This work points out a new sensing method based on the sensitivity of the acoustic vibration damping to the surrounding medium.
Journal of Applied Physics | 1991
Adnen Mlayah; R. Carles; G. Landa; E. Bedel; A. Muñoz‐Yagüe
Raman spectroscopy measurements have been performed on GaAs:Be samples with high crystalline quality and exceptional heavy doping level ranging from 1019 to 1.4×1021 cm−3. The recorded spectra show a structure we assigned to a coupled LO phonon‐damped plasmon mode. A theoretical expression for the Raman scattering rate by this mode has been derived from a dielectric model and compared to the experimental data. Using a fitting procedure the doping level of the samples has been estimated in agreement with Hall measurements. Moreover, the study of the Raman intensity evolution of both unscreened‐LO and coupled phonon‐plasmon structures, provided a convenient and rapid method to determine the activated carrier density in p‐doped polar semiconductors. Disorder effects due to the dopant impurities have been also observed and analyzed using a spatial correlation model description.
Nano Letters | 2011
S. Tripathy; Renaud Marty; Vivian Kaixin Lin; Siew Lang Teo; Enyi Ye; Arnaud Arbouet; Lucien Saviot; Christian Girard; Ming-Yong Han; Adnen Mlayah
This work is devoted to the fundamental understanding of the interaction between acoustic vibrations and surface plasmons in metallic nano-objects. The acoustoplasmonic properties of coupled spherical gold nanoparticles and nanodisk trimers are investigated experimentally by optical transmission measurements and resonant Raman scattering experiments. For excitation close to resonance with the localized surface plasmons of the nanodisk trimers, we are able to detect several intense Raman bands generated by the spherical gold nanoparticles. On the basis of both vibrational dynamics calculations and Raman selection rules, the measured Raman bands are assigned to fundamental and overtones of the quadrupolar and breathing vibration modes of the spherical gold nanoparticles. Simulations of the electric near-field intensity maps performed at the Raman probe wavelengths showed strong localization of the optical energy in the vicinity of the nanodisk trimers, thus corroborating the role of the interaction between the acoustic vibrations of the spherical nanoparticles and the surface plasmons of the nanodisk trimers. Acoustic phonons surface enhanced Raman scattering is here demonstrated for the first time for such coupled plasmonic systems. This work paves the way to surface plasmon engineering for sensing the vibrational properties of nanoparticles.
Optics Express | 2011
Nicolas Large; Javier Aizpurua; Vivian Kaixin Lin; Siew Lang Teo; Renaud Marty; S. Tripathy; Adnen Mlayah
Using numerical simulations, we demonstrate that fine shape details of gold nanoring-disks are responsible for significant modifications of their localized surface plasmon properties. The numerical results are supported by optical transmission measurements and by atomic force microscopy. In particular, we found that, depending on the ring wall sharpness, the spectral shift of the ring-like localized surface plasmon resonance can be as large as few hundred nanometers. These results shed the light on the strong sensitivity of the surface plasmon properties to very small deviations of the ring and disk shapes from the ideally flat surfaces and sharp edges. This effect is particularly important for tailoring the surface plasmon properties of metallic nanostructures presenting edges and wedges for applications in bio- and chemical sensing and for enhancement of light scattering.
Optics Express | 2010
Siew Lang Teo; Vivian Kaixin Lin; Renaud Marty; Nicolas Large; Esther Alarcon Llado; Arnaud Arbouet; Christian Girard; Javier Aizpurua; S. Tripathy; Adnen Mlayah
In this work we report on the observation of surface plasmon properties of periodic arrays of gold nanoring trimers fabricated by electron beam lithography. It is shown that the localized surface plasmon resonances of such gold ring trimers occur in the infrared spectral region and are strongly influenced by the nanoring geometry and their relative positions. Based on numerical simulations of the optical extinction spectra and of the electric near-field intensity maps, the resonances are assigned to surface plasmon states arising from the strong intra-trimer electromagnetic interaction. We show that the nanoring trimer configuration allows for generating infrared surface plasmon resonances associated with strongly localized electromagnetic energy, thus providing plasmonic nanoresonators well-suited for sensing and surface enhanced near-infrared Raman spectroscopy.