Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adolf Coray is active.

Publication


Featured researches published by Adolf Coray.


Medical Physics | 1995

The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization.

Eros Pedroni; Reinhard Bacher; Hans Blattmann; Terence Böhringer; Adolf Coray; Antony Lomax; Shixiong Lin; Gudrun Munkel; Stefan Scheib; Uwe Schneider; Alexander Tourovsky

The new proton therapy facility is being assembled at the Paul Scherrer Institute (PSI). The beam delivered by the PSI sector cyclotron can be split and brought into a new hall where it is degraded from 590 MeV down to an energy in the range of 85-270 MeV. A new beam line following the degrader is used to clean the low-energetic beam in phase space and momentum band. The analyzed beam is then injected into a compact isocentric gantry, where it is applied to the patient using a new dynamic treatment modality, the so-called spot-scanning technique. This technique will permit full three-dimensional conformation of the dose to the target volume to be realized in a routine way without the need for individualized patient hardware like collimators and compensators. By combining the scanning of the focused pencil beam within the beam optics of the gantry and by mounting the patient table eccentrically on the gantry, the diameter of the rotating structure has been reduced to only 4 m. In the article the degrees of freedom available on the gantry to apply the beam to the patient (with two rotations for head treatments) are also discussed. The devices for the positioning of the patient on the gantry (x rays and proton radiography) and outside the treatment room (the patient transporter system and the modified mechanics of the computer tomograph unit) are briefly presented. The status of the facility and first experimental results are introduced for later reference.


Physics in Medicine and Biology | 2005

Experimental characterization and physical modelling of the dose distribution of scanned proton pencil beams

Eros Pedroni; S Scheib; Terence Böhringer; Adolf Coray; Martin Grossmann; Shixiong Lin; Antony Lomax

In this paper we present the pencil beam dose model used for treatment planning at the PSI proton gantry, the only system presently applying proton therapy with a beam scanning technique. The scope of the paper is to give a general overview on the various components of the dose model, on the related measurements and on the practical parametrization of the results. The physical model estimates from first physical principles absolute dose normalized to the number of incident protons. The proton beam flux is measured in practice by plane-parallel ionization chambers (ICs) normalized to protons via Faraday-cup measurements. It is therefore possible to predict and deliver absolute dose directly from this model without other means. The dose predicted in this way agrees very well with the results obtained with ICs calibrated in a cobalt beam. Emphasis is given in this paper to the characterization of nuclear interaction effects, which play a significant role in the model and are the major source of uncertainty in the direct estimation of the absolute dose. Nuclear interactions attenuate the primary proton flux, they modify the shape of the depth-dose curve and produce a faint beam halo of secondary dose around the primary proton pencil beam in water. A very simple beam halo model has been developed and used at PSI to eliminate the systematic dependences of the dose observed as a function of the size of the target volume. We show typical results for the relative (using a CCD system) and absolute (using calibrated ICs) dosimetry, routinely applied for the verification of patient plans. With the dose model including the nuclear beam halo we can predict quite precisely the dose directly from treatment planning without renormalization measurements, independently of the dose, shape and size of the dose fields. This applies also to the complex non-homogeneous dose distributions required for the delivery of range-intensity-modulated proton therapy, a novel therapy technique developed at PSI.


Medical Physics | 2001

Intensity modulated proton therapy: A clinical example

Antony Lomax; Terence Boehringer; Adolf Coray; Emmanuel Egger; Gudrun Goitein; Martin Grossmann; P. Juelke; Shixiong Lin; Eros Pedroni; B. Rohrer; W. Roser; B. Rossi; B. Siegenthaler; Otto Stadelmann; H. Stauble; C. Vetter; L. Wisser

In this paper, we report on the clinical application of fully automated three-dimensional intensity modulated proton therapy, as applied to a 34-year-old patient presenting with a thoracic chordoma. Due to the anatomically challenging position of the lesion, a three-field technique was adopted in which fields incident through the lungs and heart, as well as beams directed directly at the spinal cord, could be avoided. A homogeneous target dose and sparing of the spinal cord was achieved through field patching and computer optimization of the 3D fluence of each field. Sensitivity of the resultant plan to delivery and calculational errors was determined through both the assessment of the potential effects of range and patient setup errors, and by the application of Monte Carlo dose calculation methods. Ionization chamber profile measurements and 2D dosimetry using a scintillator/CCD camera arrangement were performed to verify the calculated fields in water. Modeling of a 10% overshoot of proton range showed that the maximum dose to the spinal cord remained unchanged, but setup error analysis showed that dose homogeneity in the target volume could be sensitive to offsets in the AP direction. No significant difference between the MC and analytic dose calculations was found and the measured dosimetry for all fields was accurate to 3% for all measured points. Over the course of the treatment, a setup accuracy of +/-4 mm (2 s.d.) could be achieved, with a mean offset in the AP direction of 0.1 mm. Inhalation/exhalation CT scans indicated that organ motion in the region of the target volume was negligible. We conclude that 3D IMPT plans can be applied clinically and safely without modification to our existing delivery system. However, analysis of the calculated intensity matrices should be performed to assess the practicality, or otherwise, of the plan.


Physics in Medicine and Biology | 1992

Effects of respiratory motion on dose uniformity with a charged particle scanning method

M H Phillips; Eros Pedroni; H Blattmann; T Boehringer; Adolf Coray; S Scheib

A three-dimensional spot-scanning technique for radiotherapy with protons is being developed at the Paul Scherrer Institute. As part of the effort to optimize the design and ensure clinically useful dose distributions, a computer simulation of the dose deposition in the presence of respiratory motion was performed. Preliminary experiments have characterized the proton beam and the scanning procedure. Using these parameters, the computer program calculated the dose within a uniform volume of water in the presence of respiratory motion. Respiration amplitude, respiration period, respiration direction, number of fractions, size and position of the beamspots and rescanning multiplicity were systematically varied and the effect on the dose distribution determined. The dose uniformity is very dependent on the direction of the respiration relative to the three independent beam scanning directions. The dose uniformity decreases with increasing respiration amplitude, but has little response to changes in respiration frequency. Rescanning the volume, such as with fractionation, improves the dose uniformity roughly as the square root of the number of fractions. Broad, Gaussian beams result in better dose uniformity than narrow, sharply delineated ones, but produce slower dose fall-off at the edges of the scanned volume. Results of this work are being incorporated into the design of the system.


Zeitschrift Fur Medizinische Physik | 2004

The PSI Gantry 2: a second generation proton scanning gantry

Eros Pedroni; Ralph Bearpark; Terence Böhringer; Adolf Coray; Jürgen Duppich; Sven Forss; David George; Martin Grossmann; Gudrun Goitein; Christian Hilbes; Martin Jermann; Shixiong Lin; Antony Lomax; Marco Negrazus; Marco Schippers; Goran Kotrle

PSI is still the only location in which proton therapy is applied using a dynamic beam scanning technique on a very compact gantry. Recently, this system is also being used for the application of intensity-modulated proton therapy (IMPT). This novel technical development and the success of the proton therapy project altogether have led PSI in Year 2000 to further expand the activities in this field by launching the project PROSCAN. The first step is the installation of a dedicated commercial superconducting cyclotron of a novel type. The second step is the development of a new gantry, Gantry 2. For Gantry 2 we have chosen an iso-centric compact gantry layout. The diameter of the gantry is limited to 7.5 m, less than in other gantry systems (approximately 10-12 m). The space in the treatment room is comfortably large, and the access on a fixed floor is possible any time around the patient table. Through the availability of a faster scanning system, it will be possible to treat the target volume repeatedly in the same session. For this purpose, the dynamic control of the beam intensity at the ion source and the dynamic variation of the beam energy will be used directly for the shaping of the dose.


Strahlentherapie Und Onkologie | 1999

Initial experience of using an active beam delivery technique at PSI

Eros Pedroni; Terence Böhringer; Adolf Coray; Emmanuel Egger; Martin Grossmann; Shixiong Lin; Antony Lomax; Gudrun Goitein; Werner Roser; Barbara Schaffner

SummaryAt PSI a new proton therapy facility has been assembled and commissioned. The major features of the facility are the spot scanning technique and the very compact gantry. The operation of the facility was started in 1997 and the feasibility of the spot scanning technique has been demonstrated in practice with patient treatments. In this report we discuss the usual initial difficulties encountered in the commissioning of a new technology, the very positive preliminary experience with the system and the optimistic expectations for the future. The long range goal of this project is to parallel the recent developments regarding inverse planning for photons with a similar advanced technology optimized for a proton beam.


Radiotherapy and Oncology | 1996

Proton dosimetry intercomparison

Stanislav Vatnitsky; J Siebers; Daniel W. Miller; Michael F. Moyers; M Schaefer; D. T. L. Jones; Stefaan Vynckier; Y Hayakawa; S Delacroix; Ulf Isacsson; Joakim Medin; A Kacperek; Antony Lomax; Adolf Coray; H Kluge; J Heese; Lynn Verhey; Inder K. Daftari; K Gall; G Lam; T Beck; Günther H. Hartmann

BACKGROUND AND PURPOSE Methods for determining absorbed dose in clinical proton beams are based on dosimetry protocols provided by the AAPM and the ECHED. Both groups recommend the use of air-filled ionization chambers calibrated in terms of exposure or air kerma in a 60Co beam when a calorimeter or Faraday cup dosimeter is not available. The set of input data used in the AAPM and the ECHED protocols, especially proton stopping powers and w-value is different. In order to verify inter-institutional uniformity of proton beam calibration, the AAPM and the ECHED recommend periodic dosimetry intercomparisons. In this paper we report the results of an international proton dosimetry intercomparison which was held at Loma Linda University Medical Center. The goal of the intercomparison was two-fold: first, to estimate the consistency of absorbed dose delivered to patients among the participating facilities, and second, to evaluate the differences in absorbed dose determination due to differences in 60Co-based ionization chamber calibration protocols. MATERIALS AND METHODS Thirteen institutions participated in an international proton dosimetry intercomparison. The measurements were performed in a 15-cm square field at a depth of 10 cm in both an unmodulated beam (nominal accelerator energy of 250 MeV) and a 6-cm modulated beam (nominal accelerator energy of 155 MeV), and also in a circular field of diameter 2.6 cm at a depth of 1.14 cm in a beam with 2.4 cm modulation (nominal accelerator energy of 100 MeV). RESULTS The results of the intercomparison have shown that using ionization chambers with 60Co calibration factors traceable to standard laboratories, and institution-specific conversion factors and dose protocols, the absorbed dose specified to the patient would fall within 3% of the mean value. A single measurement using an ionization chamber with a proton chamber factor determined with a Faraday cup calibration differed from the mean by 8%. CONCLUSION The adoption of a single ionization chamber dosimetry protocol and uniform conversion factors will establish agreement on proton absorbed dose to approximately 1.5%, consistent with that which has been observed in high-energy photon and electron dosimetry.


Medical Physics | 2009

More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI

Shixiong Lin; Terence Boehringer; Adolf Coray; Martin Grossmann; Eros Pedroni

PURPOSE The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the authors experience in the beam monitoring technique for dynamic proton scanning. METHODS The spot dose delivery and verification use two independent beam monitoring and computer systems. In this article, the detector construction, electronic system, dosimetry, and quality assurance results are described in detail. The beam flux monitor is calibrated with a Faraday cup. The beam position monitoring is realized by measuring the magnetic fields of deflection magnets with Hall probes before applying the spot and by checking the beam position and width with an ionization strip chamber after the spot delivery. RESULTS The results of thimble ionization chamber dosimetry measurements are reproducible (with a mean deviation of less than 1% and a standard deviation of 1%). The resolution in the beam position measurement is of the order of a tenth of a millimeter. The tolerance of the beam position delivery and monitoring during scanning is less than 1.5 mm. CONCLUSIONS The experiences gained with the successful operation of Gantry 1 represent a unique and solid background for the development of a new system, Gantry 2, in order to perform new advanced scanning techniques.


Radiotherapy and Oncology | 1999

Proton dosimetry intercomparison based on the ICRU report 59 protocol

Stanislav Vatnitsky; Michael F. Moyers; Daniel W. Miller; Greg Abell; James M. Slater; Eros Pedroni; Adolf Coray; Alejandro Mazal; W Newhauser; Oliver Jaekel; Juergen Heese; Akifumi Fukumura; Yasuyuki Futami; Lynn Verhey; Inder K. Daftari; Erik Grusell; A. G. Molokanov; Charles Bloch

BACKGROUND AND PURPOSE A new protocol for calibration of proton beams was established by the ICRU in report 59 on proton dosimetry. In this paper we report the results of an international proton dosimetry intercomparison, which was held at Loma Linda University Medical Center. The goals of the intercomparison were, first, to estimate the level of consistency in absorbed dose delivered to patients if proton beams at various clinics were calibrated with the new ICRU protocol, and second, to evaluate the differences in absorbed dose determination due to differences in 60Co-based ionization chamber calibration factors. MATERIALS AND METHODS Eleven institutions participated in the intercomparison. Measurements were performed in a polystyrene phantom at a depth of 10.27 cm water equivalent thickness in a 6-cm modulated proton beam with an accelerator energy of 155 MeV and an incident energy of approximately 135 MeV. Most participants used ionization chambers calibrated in terms of exposure or air kerma. Four ionization chambers had 60Co-based calibration in terms of absorbed dose-to-water. Two chambers were calibrated in a 60Co beam at the NIST both in terms of air kerma and absorbed dose-to-water to provide a comparison of ionization chambers with different calibrations. RESULTS The intercomparison showed that use of the ICRU report 59 protocol would result in absorbed doses being delivered to patients at their participating institutions to within +/-0.9% (one standard deviation). The maximum difference between doses determined by the participants was found to be 2.9%. Differences between proton doses derived from the measurements with ionization chambers with N(K)-, or N(W) - calibration type depended on chamber type. CONCLUSIONS Using ionization chambers with 60Co calibration factors traceable to standard laboratories and the ICRU report 59 protocol, a distribution of stated proton absorbed dose is achieved with a difference less than 3%. The ICRU protocol should be adopted for clinical proton beam calibration. A comparison of proton doses derived from measurements with different chambers indicates that the difference in results cannot be explained only by differences in 60Co calibration factors.


International Journal of Radiation Oncology Biology Physics | 2014

Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

Nicole Grosse; Andrea O. Fontana; Eugen B. Hug; Antony Lomax; Adolf Coray; Marc Augsburger; Harald Paganetti; Alessandro A. Sartori; Martin Pruschy

PURPOSE To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. METHODS AND MATERIALS The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. RESULTS All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. CONCLUSION Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

Collaboration


Dive into the Adolf Coray's collaboration.

Top Co-Authors

Avatar

Eros Pedroni

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar

Antony Lomax

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shixiong Lin

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge